【题目】如图,在三棱柱与四棱锥的组合体中,已知平面,四边形是平行四边形, , , , ,设是线段中点.
(1)求证: 平面;
(2)证明:平面平面;
(3)求四棱锥的体积.
【答案】(1)见解析;(2)见解析;(3).
【解析】试题分析:取的中点,连接,易证为平行四边形,从而得到,再利用线面平行的判定定理即可;
(2)根据,证得,即,进一步可证,从而证得面,于是得平面,利用面面垂直的判定定理可得结论;
(3)利用等体积法,即可求得点到平面的距离.
试题解析:
(1)证明:取的中点,连结, , ,则、、三点共线,
∵为三棱柱,∴平面平面,
故且,∴四边形为平行四边形,∴,又∵面,
面面.
(2)证明:∵, , ,作于,
可得, , ,则,
∴,即,
又平面, 平面, ,
在三棱柱中, 而,
∴平面,又,得平面,
而平面,∴平面平面.
(3)由(2)知, ,又,∴平面,
即为四棱锥的高, ,又,
∴.
科目:高中数学 来源: 题型:
【题目】在各项为正的数列{an}中,数列的前n项和Sn满足Sn= (an+ ),
(1)求a1 , a2 , a3;
(2)由(1)猜想数列{an}的通项公式,并用数学归纳法证明你的猜想.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市出租车的收费标准是:3千米以内(含3千米),收起步价8元;3千米以上至8千米以内(含8千米),超出3千米的部分按元/千米收取;8千米以上,超出8千米的部分按2元/千米收取.
(1)计算某乘客搭乘出租车行驶7千米时应付的车费;
(2)试写出车费 (元)与里程 (千米)之间的函数解析式并画出图像;
(3)小陈周末外出,行程为10千米,他设计了两种方案:
方案1:分两段乘车,先乘一辆行驶5千米,下车换乘另一辆车再行5千米至目的地
方案2:只乘一辆车至目的地,试问:以上哪种方案更省钱,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱与四棱锥的组合体中,已知平面,四边形是平行四边形, , , , ,设是线段中点.
(1)求证: 平面;
(2)证明:平面平面;
(3)求四棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】大西洋鲑鱼每年都要逆流而上,游回产地产卵,研究鲑鱼的科学家发现鲑鱼的游速(单位: )与其耗氧量单位数之间的关系可以表示为函数,其中为常数,已知一条鲑鱼在静止时的耗氧量为100个单位;而当它的游速为时,其耗氧量为2700个单位.
(1)求出游速与其耗氧量单位数之间的函数解析式;
(2)求当一条鲑鱼的游速不高于时,其耗氧量至多需要多少个单位?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“共享单车”的出现,为我们提供了一种新型的交通方式.某机构为了调查人们对此种交通方式的满意度,从交通拥堵不严重的 城市和交通拥堵严重的 城市分别随机调查了20个用户,得到了一个用户满意度评分的样本,并绘制出茎叶图(如图所示):
若得分不低于80分,则认为该用户对此种交通方式“认可”,否则认为该用户对此种交通方式“不认可”,请根据此样本完成此 列联表,并据此样本分析是否有 的把握认为城市拥堵与认可共享单车有关:
合计 | |||
认可 | |||
不认可 | |||
合计 |
附:参考数据:(参考公式: )
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市自来水公司每两个月(记为一个收费周期)对用户收一次水费,收费标准如下:当每户用水量不超过吨时,按每吨元收取;当该用户用水量超过吨时,超出部分按每吨元收取.
(1)记某用户在一个收费周期的用水量为吨,所缴水费为元,写出关于的函数解析式.
(2)在某一个收费周期内,若甲、乙两用户所缴水费的和为元,且甲、乙两用户用水量之比为,试求出甲、乙两用户在该收费周期内各自的用水量和水费.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com