【题目】已知圆内有一点为过点且倾斜角为的弦.
(1)当时,求弦的长;
(2)当弦被平分时,圆经过点且与直线相切于点,求圆的标准方程.
【答案】(1);(2).
【解析】
试题分析:(1)先根据题目条件求出直线的方程,再求出圆心到线的距离,进而可求得弦的长;
(2)由条件可知,圆的圆心为线段的中垂线与直线的交点,因此可以据此求得圆的圆心的坐标,并进一步可求出圆的半径,从而可以求出圆的标准方程.
试题解析:(1)由题意:圆心,,则直线;...........2分
圆心到直线的距离,弦..................5分
(2)由题意,弦被平分,则..................6分
∵圆经过点且与直线相切于点,
∴圆的圆心为线段的中垂线与直线的交点,
∵,
∴直线;线段中点为,
∴线段中垂线:.....................7分
∵,∴.................8分
∴..................9分
∴圆的方程为.................10分
科目:高中数学 来源: 题型:
【题目】下列命题中正确的是
A. 若直线与平面平行,则与平面内的任意一条直线都没有公共点;
B. 若直线与平面平行,则与平面内的任意一条直线都平行;
C. 若直线上有无数个点不在平面 内,则;
D. 如果两条平行线中的一条与一个平面平行,那么另一条也与这个平面平行.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量.
(1)若分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足的概率;
(2)若在连续区间上取值,求满足的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—4:坐标系与参数方程
已知平面直角坐标系,以为极点,轴的非负半轴为极轴建立极坐标系,点的极坐标为,曲线的参数方程为(为参数).
(1)写出点的直角坐标及曲线的直角坐标方程;
(2)若为曲线上的动点,求中点到直线的距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线:,半径为2的圆与相切,圆心在轴上且在直线的右上方.
(1)求圆的方程;
(2)若直线过点且与圆交于,两点(在轴上方,在轴下方),问在轴正半轴上是否存在定点,使得轴平分?若存在,请求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,.
(I)求证:在区间上单调递增;
(II)若,函数在区间上的最大值为,求的试题分析式.并判断是否有最大值和最小值,请说明理由(参考数据:)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市有一直角梯形绿地,其中,km,km.现过边界上的点处铺设一条直的灌溉水管,将绿地分成面积相等的两部分.
(1)如图①,若为的中点,在边界上,求灌溉水管的长度;
(2)如图②,若在边界上,求灌溉水管的最短长度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com