精英家教网 > 高中数学 > 题目详情
5.已知a,b,c为正实数,给出以下结论:
①若a-2b+3c=0,则$\frac{{b}^{2}}{ac}$的最小值是3;
②若a+2b+2ab=8,则a+2b的最小值是4;
③若a(a+b+c)+bc=4,则2a+b+c的最小是2$\sqrt{2}$;
④若a2+b2+c2=4,则$\sqrt{5}$ab+$\sqrt{2}$bc的最大值是2$\sqrt{7}$.
其中正确结论的序号是①②④.

分析 变形,利用基本不等式,分别进行判断,即可得出结论.

解答 解:①若a-2b+3c=0,则2b=a+3c≥2$\sqrt{3ac}$,∴b2≥3ac,∴$\frac{{b}^{2}}{ac}$≥3,∴$\frac{{b}^{2}}{ac}$的最小值是3,正确;
②设t=a+2b,则t>0,由a+2b+2ab=8得2ab=8-(a+2b)≤$(\frac{a+2b}{2})^{2}$,即8-t≤$\frac{{t}^{2}}{4}$,整理得t2+4t-32≥0,解得t≥4或t≤-8(舍去),即a+2b≥4,所以a+2b的最小值是4.正确;
③∵a,b,c>0,∴a+c>0,a+b>0,∵a(a+b+c)+bc=a(a+b)+ac+bc=a(a+b)+c(a+b)=(a+c)(a+b)=4,∴2a+b+c=(a+b)+(a+c)≥2$\sqrt{(a+c)(a+b)}$=4,∴2a+b+c的最小值为4,不正确;
④若a2+b2+c2=4,则4=a2+$\frac{5}{7}$b2+$\frac{2}{7}$b2+c2≥2$\sqrt{\frac{5}{7}}$ab+2$\sqrt{\frac{2}{7}}$bc,∴$\sqrt{5}$ab+$\sqrt{2}$bc≤2$\sqrt{7}$,∴$\sqrt{5}$ab+$\sqrt{2}$bc的最大值是2$\sqrt{7}$,正确
综上所述,正确结论的序号是①②④.
故答案为:①②④.

点评 本题考查基本不等式的运用,考查学生分析解决问题的能力,正确运用基本不等式是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.数列{an}的首项a1=1,且满足对任意的a1=1,都有an+1-an≤2n,an+2-an≥3×2n成立,则a2015=22015-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.若集合A={x|x2-x-12≤0},集合B={x|2m-1≤x≤m+1}.
(1)当m=-3时,求集合A∪B;
(2)当A∩B=B时,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.化简:$\frac{sin(π-α)}{tan(π+α)}•\frac{tan(2π-α)}{cos(π-α)}•\frac{cos(2π-α)}{sin(π+α)}$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=4sin($\frac{x}{3}$+$\frac{π}{6}$),f(3α+π)=$\frac{16}{5}$,f(3β+$\frac{5π}{2}$)=-$\frac{20}{13}$,其中α,β∈[0,$\frac{π}{2}$],则cos(α-β)的值为(  )
A.$\frac{13}{65}$B.$\frac{15}{65}$C.$\frac{48}{65}$D.$\frac{63}{65}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知$\overrightarrow a$=(5,3),$\overrightarrow b$=(-2,t),若$\overrightarrow a$与$\overrightarrow b$的夹角为钝角,则实数t的取值范围是(-∞,-$\frac{6}{5}$)∪($-\frac{6}{5}$,$\frac{10}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在平面直角坐标系xOy中,已知直线l:ax+y+3=0,点A(0,1),若直线l上存在点M,满足|MA|=2,则实数a的取值范围是a≤-$\sqrt{3}$或a≥$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在△ABC中,BC=3,CA=5,AB=7,则$\overrightarrow{AC}$•$\overrightarrow{CB}$的值为$\frac{15}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.阅读如图所示的程序框图,运行相应的程序,若输入n的值为4,则输出S的值为40.

查看答案和解析>>

同步练习册答案