A. | $[{\frac{π}{4},\frac{5π}{4}}]$ | B. | [-π,0] | C. | [0,π] | D. | $[{0,\frac{π}{4}}]$ |
分析 由三角函数公式化简可得f(x)=$\sqrt{2}$cos(x+$\frac{π}{4}$),解2kπ≤x+$\frac{π}{4}$≤2kπ+π可得函数的单调递减区间,结合选项可得.
解答 解:由三角函数公式化简可得f(x)=cosx-sinx
=$\sqrt{2}$($\frac{\sqrt{2}}{2}$cosx-$\frac{\sqrt{2}}{2}$sinx)=$\sqrt{2}$cos(x+$\frac{π}{4}$),
由2kπ≤x+$\frac{π}{4}$≤2kπ+π可得2kπ-$\frac{π}{4}$≤x≤2kπ+$\frac{3π}{4}$,k∈Z,
故函数的单调递减区间为[2kπ-$\frac{π}{4}$,2kπ+$\frac{3π}{4}$],k∈Z,
当k=0时,函数的一个单调递减区间为[-$\frac{π}{4}$,$\frac{3π}{4}$],
而选项D[0,$\frac{π}{4}$]?[-$\frac{π}{4}$,$\frac{3π}{4}$],
故选:D.
点评 本题考查三角函数的单调性,涉及整体思想,属基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com