【题目】一个总体容量为60,其中的个体编号为00,01,02,…,59.现需从中抽取一个容量为7的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11~12列的18开始,依次向下,到最后一行后向右,直到取足样本,则抽取样本的号码是_____________.
95 33 95 22 00 18 74 72 00 18 46 40 62 98 80 54 97 20 56 95
38 79 58 69 32 81 76 80 26 92 15 74 80 08 32 16 46 70 50 80
82 80 84 25 39 90 84 60 79 80 67 72 16 42 79 71 59 73 05 50
24 36 59 87 38 82 07 53 89 35 08 22 23 71 77 91 01 93 20 49
96 35 23 79 18 05 98 90 07 35 82 96 59 26 94 66 39 67 98 60
【答案】18,05,07,35,59,26,39.
【解析】
从随机数表的倒数第5行第11~12列开始,依次向下,到最后一行后向右读取两位数,大于等于60的数据应舍去,与前面取到的数据重复的也舍去,直到取足7个样本号码为止.
解:根据题意,60个个体编号为00,01,,59,现从中抽取一容量为7的样本,
从随机数表的倒数第5行第11~12列开始,向下读取,到最后一行后向右
18,81(舍去),90(舍去),82(舍去),05,98(舍去),90(舍去),07,35,82(舍去),96(舍去),59,26,94(舍去),66(舍去),39共7个;
所以抽取样本的号码是18,00,46,40,54,20,56.
故答案为:18,05,07,35,59,26,39.
科目:高中数学 来源: 题型:
【题目】如果存在函数(为常数),使得对函数定义域内任意都有成立,那么称为函数的一个“线性覆盖函数”.给出如下四个结论:
①函数存在“线性覆盖函数”;
②对于给定的函数,其“线性覆盖函数”可能不存在,也可能有无数个;
③为函数的一个“线性覆盖函数”;
④若为函数的一个“线性覆盖函数”,则
其中所有正确结论的序号是___________
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(,且).
(Ⅰ)求函数的单调区间;
(Ⅱ)求函数在上的最大值.
【答案】(Ⅰ)的单调增区间为,单调减区间为.(Ⅱ)当时, ;当时, .
【解析】【试题分析】(I)利用的二阶导数来研究求得函数的单调区间.(II) 由(Ⅰ)得在上单调递减,在上单调递增,由此可知.利用导数和对分类讨论求得函数在不同取值时的最大值.
【试题解析】
(Ⅰ),
设 ,则.
∵, ,∴在上单调递增,
从而得在上单调递增,又∵,
∴当时, ,当时, ,
因此, 的单调增区间为,单调减区间为.
(Ⅱ)由(Ⅰ)得在上单调递减,在上单调递增,
由此可知.
∵, ,
∴.
设,
则 .
∵当时, ,∴在上单调递增.
又∵,∴当时, ;当时, .
①当时, ,即,这时, ;
②当时, ,即,这时, .
综上, 在上的最大值为:当时, ;
当时, .
[点睛]本小题主要考查函数的单调性,考查利用导数求最大值. 与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图像,讨论其图象与轴的位置关系,进而确定参数的取值范围;或通过对方程等价变形转化为两个函数图象的交点问题.
【题型】解答题
【结束】
22
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,圆的普通方程为. 在以坐标原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为 .
(Ⅰ) 写出圆 的参数方程和直线的直角坐标方程;
( Ⅱ ) 设直线 与轴和轴的交点分别为,为圆上的任意一点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过点任作一直线交抛物线于两点,过两点分别作抛物线的切线.
(Ⅰ)记的交点的轨迹为,求的方程;
(Ⅱ)设与直线交于点(异于点),且,.问是否为定值?若为定值,请求出定值.若不为定值,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将一个总体的100个个体编号为0,1,2,…,99,并依次将其分为10个组,组号为0,1,2,…,9.要用系统抽样法抽取一个容量为10的样本,如果在第0组(号码为0—9)随机抽取的号码为2,则抽取的10个号码为______________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为建立健全国家学生体质健康监测评价机制,激励学生积极参加身体锻炼,教育部印发《国家学生体质健康标准(2014年修订)》,要求各学校每学期开展覆盖本校各年级学生的《标准》测试工作,并根据学生每个学期总分评定等级.某校决定针对高中学生,每学期进行一次体质健康测试,以下是小明同学六个学期体质健康测试的总分情况.
学期 | 1 | 2 | 3 | 4 | 5 | 6 |
总分(分) | 512 | 518 | 523 | 528 | 534 | 535 |
(1)请根据上表提供的数据,用相关系数说明与的线性相关程度,并用最小二乘法求出关于的线性回归方程(线性相关系数保留两位小数);
(2)在第六个学期测试中学校根据 《标准》,划定540分以上为优秀等级,已知小明所在的学习小组10个同学有6个被评定为优秀,测试后同学们都知道了自己的总分但不知道别人的总分,小明随机的给小组内4个同学打电话询问对方成绩,优秀的同学有人,求的分布列和期望.
参考公式: ,;
相关系数;
参考数据:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知幂函数f(x)=,其中2<m<2,m∈Z,满足:
(1)f(x)是区间(0,+∞)上的增函数;
(2)对任意的x∈R,都有f(x) +f(x)=0.
求同时满足条件(1)、(2)的幂函数f(x)的解析式,并求x∈[0,3]时,f(x)的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:()的离心率,左、右焦点分别为、,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段的垂直平分线交于点.
(1)求点的轨迹的方程;
(2)当直线与椭圆相切,交于点,,当时,求的直线方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com