精英家教网 > 高中数学 > 题目详情

【题目】如图所示,三棱柱的侧棱垂直于底面,且底面是边长为2的正三角形,,点DEF分别是所在棱的中点.

(1)在线段上找一点使得平面∥平面,给出点的位置并证明你的结论;

(2)在(1)的条件下,求二面角的余弦值.

【答案】(1)点与点重合,证明见解析,(2)

【解析】

(1)首先连接.根据三角形中位线得到,根据四边形是平行四边形,得到,即证平面∥平面.

(2)首先以点为坐标原点,分别以所在直线为轴,轴,轴建立如图所示的空间直角坐标系.分别求平面和平面的法向量,再代入二面角公式计算即可.

(1)点与点重合,证明如下:

连接.

因为分别是的中点,所以.

因为平面平面,所以平面.

因为分别是的中点,所以,且

所以四边形是平行四边形,所以.

因为平面平面,所以平面.

又因为,所以平面平面.

(2)以点为坐标原点,分别以所在直线为轴,轴,

建立如图所示的空间直角坐标系.

由(1)可得二面角.

.

所以.

因为平面平面,所以平面的法向量即平面的法向量,

设为,则.

,则.

因为.

所以.

设平面的一个法向量为.

,则.

.

由图易知二面角的平面角是锐角,所以余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】从某小区随机抽取40个家庭,收集了这40个家庭去年的月均用水量(单位:吨)的数据,整理得到频数分布表和频率分布直方图.

(1)求频率分布直方图中的值;

(2)从该小区随机选取一个家庭,试估计这个家庭去年的月均用水量不低于6吨的概率;

(3)在这40个家庭中,用分层抽样的方法从月均用水量不低于6吨的家庭里抽取一个容量为7的样本,将该样本看成一个总体,从中任意选取2个家庭,求其中恰有一个家庭的月均用水量不低于8吨的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为调研高中生的作文水平.在某市普通高中的某次联考中,参考的文科生与理科生人数之比为,且成绩分布在的范围内,规定分数在50以上(含50)的作文被评为“优秀作文”,按文理科用分层抽样的方法抽取400人的成绩作为样本,得到成绩的频率分布直方图,如图所示.其中构成以2为公比的等比数列.

1)求的值;

2)填写下面列联表,能否在犯错误的概率不超过0.01的情况下认为“获得优秀作文”与“学生的文理科”有关?

文科生

理科生

合计

获奖

6

不获奖

合计

400

3)将上述调查所得的频率视为概率,现从全市参考学生中,任意抽取2名学生,记“获得优秀作文”的学生人数为,求的分布列及数学期望.

附:,其中.

.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且过点.

(1)求椭圆C的标准方程;

2)点P是椭圆上异于短轴端点AB的任意一点,过点P轴于Q,线段PQ的中点为M.直线AM与直线交于点ND为线段BN的中点,设O为坐标原点,试判断以OD为直径的圆与点M的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在考察疫情防控工作中,某区卫生防控中心提出了“要坚持开展爱国卫生运动,从人居环境改善、饮食习惯、社会心理健康、公共卫生设施等多个方面开展,特别是要坚决杜绝食用野生动物的陋习,提倡文明健康、绿色环保的生活方式”的要求.某小组通过问卷调查,随机收集了该区居民六类日常生活习惯的有关数据.六类习惯是:(1)卫生习惯状况类;(2)垃圾处理状况类;(3)体育锻炼状况类;(4)心理健康状况类;(5)膳食合理状况类;(6)作息规律状况类.经过数据整理,得到下表:

卫生习惯状况类

垃圾处理状况类

体育锻炼状况类

心理健康状况类

膳食合理状况类

作息规律状况类

有效答卷份数

380

550

330

410

400

430

习惯良好频率

0.6

0.9

0.8

0.7

0.65

0.6

假设每份调查问卷只调查上述六类状况之一,各类调查是否达到良好标准相互独立.

1)从小组收集的有效答卷中随机选取1份,求这份试卷的调查结果是膳食合理状况类中习惯良好者的概率;

2)从该区任选一位居民,试估计他在“卫生习惯状况类、体育锻炼状况类、膳食合理状况类”三类习惯方面,至少具备两类良好习惯的概率;

3)利用上述六类习惯调查的排序,用“”表示任选一位第k类受访者是习惯良好者,“”表示任选一位第k类受访者不是习惯良好者(.写出方差的大小关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】九章算术中有一题:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马,”马主曰:“我马食半牛”,今欲衰偿之,问各出几何?其意:今有牛、马、羊吃了别人的禾苗,苗主人要求赔偿五斗粟,羊主人说:“我羊所吃的禾苗只有马的一半”马主人说:“我马所吃的禾苗只有牛的一半”打算按此比例偿还,问羊的主人应赔偿______斗粟,在这个问题中牛主人比羊主人多赔偿______斗粟.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数上是减函数,求实数的取值范围;

(2)若函数上存在两个极值点,且,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是直角梯形,侧棱底面 垂直于为棱上的点,.

(1)若为棱的中点,求证://平面

(2)当时,求平面与平面所成的锐二面角的余弦值;

(3)在第(2)问条件下,设点是线段上的动点,与平面所成的角为,求当取最大值时点的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从抛物线上各点向x轴作垂线,垂线段中点的轨迹为E.

1)求曲线E的方程;

2)若直线与曲线E相交于AB两点,求证:

3)若点F为曲线E的焦点,过点的直线与曲线E交于MN两点,直线分别与曲线E交于CD两点,设直线斜率分别为,求的值.

查看答案和解析>>

同步练习册答案