精英家教网 > 高中数学 > 题目详情
6.填空:sin2$\frac{9π}{2}$+cos2(-$\frac{13π}{4}$)-tan2$\frac{7π}{3}$=$-\frac{3}{2}$.

分析 利用诱导公式,及轴线角三角函数的定义,代入可得答案.

解答 解:sin2$\frac{9π}{2}$+cos2(-$\frac{13π}{4}$)-tan2$\frac{7π}{3}$=sin2$\frac{π}{2}$+cos2($\frac{3π}{4}$)-tan2$\frac{π}{3}$=1+$\frac{1}{2}$-3=$-\frac{3}{2}$,
故答案为:$-\frac{3}{2}$.

点评 本题考查的知识点是三角函数的化简求值,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知数列{an}的通项公式为an=n,数列{bn}的通项公式为bn=2n
(1)数列{an}的前n项和为$\frac{1}{2}$n(n+1);
(2)数列{bn}的前n项和为2n+1-2;
(3)设cn=an+bn,求数列{cn}的前n项和;
(4)设cn=an•bn,求数列{cn}的前n项和;
(5)设cn=$\frac{1}{{{a}_{n}•a}_{n+1}}$,求数列{cn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若函数f(x)=(1-$\frac{1}{4}$x2)(x2+ax+b)的图象关于直线x=-1对称,则f(x)的最大值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等比数列{an}中,a2a6a10=1,求a3•a9的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.解不等式:$\frac{1}{C\stackrel{3}{n}}$-$\frac{1}{{C\stackrel{4}{n}}_{\;}}$<$\frac{2}{C\stackrel{5}{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.己知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),内接于椭圆的正方形面积为S1,内接于椭圆且有最大面积的矩形的面积为S2,则$\frac{{S}_{1}}{{S}_{2}}$=$\frac{2ab}{{a}^{2}+{b}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知方程$\frac{{x}^{2}}{2-a}$+$\frac{{y}^{2}}{a-1}$=1表示椭圆,那么a的范围为(1,$\frac{3}{2}$)∪($\frac{3}{2}$,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\frac{{a}^{x}+1}{{a}^{x}-1}$(a>0,且a≠1).
(1)求f(x)的定义域和值域;
(2)讨论f(x)的奇偶性;
(3)当a=2时,讨论函数f(x)的单调性,并用定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.画出方程$\sqrt{x-1}$lg(x2+y2-1)=0所表示的曲线.

查看答案和解析>>

同步练习册答案