精英家教网 > 高中数学 > 题目详情
(理)已知圆(x+4)2+y2=25的圆心为M1,圆(x-4)2+y2=1的圆心为M2,一个动圆与这两个圆都外切. 
(Ⅰ)求动圆圆心M的轨迹C的方程;
(Ⅱ)若经过点M2的直线与(Ⅰ)中的轨迹C有两个交点A、B,求|AM1|•|BM1|的最小值.
分析:(I)利用定义法求动点M的轨迹方程,先利用圆与圆相切的几何条件,得到动点M满足的几何条件,再由曲线定义判断曲线形状,最后写出曲线的标准方程;(II)将经过点M2的直线方程设为x=ty+4形式,代入(I)中的曲线,利用韦达定理和焦半径公式,将所求转化为关于t的函数,求其最小值即可
解答:解:(I)∵动圆M与这两个圆都外切,
∴|MM1|-5=|MM2|-1
即|MM1|-|MM2|=4,
∵|MM1|-|MM2|=4,4<|M1M2|=8
∴动圆圆心M的轨迹是以M1,M2为焦点的双曲线的右支
由定义可得 c=4,a=2,b2=12
∴动圆圆心M的轨迹C的方程为
x2
4
-
y2
12
=1
(x≥2)
(II)∵M2(4,1),
∴设经过点M2的直线方程为x=ty+4
代入双曲线方程
x2
4
-
y2
12
=1
,并整理得(3t2-1)y2+24ty+36=0
设A(x1,y1),B(x2,y2),则有△>0,y1+y2=-
24t
3t2-1
,y1y2=
36
3t2-1

由y1y2<0,得t2
1
3

而|AM1|•|BM1|=e(x1+1)•e(x2+1)=4(ty1+5)(ty2+5)
=4[t2(y1y2)+5t(y1+y2)+25]
=4[t2
36
3t2-1
+5t•(-
24t
3t2-1
)+25]
=-112×(1+
1
3t2-1
)+100
∵-1≤3t2-1<0
∴当3t2-1=-1时,即t=0时,|AM1|•|BM1|取得最小值100
点评:本题考查了定义法求动点轨迹方程的方法,直线与双曲线的位置关系,韦达定理的应用及设而不求的解题技巧
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009辽宁卷理) 已知圆C与直线x-y=0 及x-y-4=0都相切,圆心在直线x+y=0上,则圆C的方程为

(A)      (B)

 (C)         (D)

查看答案和解析>>

科目:高中数学 来源: 题型:

(辽宁理,4)已知圆C与直线xy=0 及xy-4=0都相切,圆心在直线x+y=0上,则圆C的方程为

A.          B.

C.          D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(理)已知圆(x+4)2+y2=25的圆心为M1,圆(x-4)2+y2=1的圆心为M2,一个动圆与这两个圆都外切.
(Ⅰ)求动圆圆心M的轨迹C的方程;
(Ⅱ)若经过点M2的直线与(Ⅰ)中的轨迹C有两个交点A、B,求|AM1|•|BM1|的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(理)已知圆(x+4)2+y2=25的圆心为M1,圆(x-4)2+y2=1的圆心为M2,一个动圆与这两个圆都外切. 
(Ⅰ)求动圆圆心M的轨迹C的方程;
(Ⅱ)若经过点M2的直线与(Ⅰ)中的轨迹C有两个交点A、B,求|AM1|•|BM1|的最小值.

查看答案和解析>>

同步练习册答案