精英家教网 > 高中数学 > 题目详情

【题目】已知.

I)讨论的单调性;

II)当有最大值,且最大值大于,a的取值范围.

【答案】)详见解析;(

【解析】试题分析:

1)由题已知函数的解析式(注意定义域),可运用导数求出函数的单调区间。即: 为函数的增区间,反之为减区间。由导函数中含有字母参数,需分类讨论;

2)由题给出了函数的最大值的范围大于,再结合(1)已知函数的单调区间,可对应单调性,表示出函数的最大值,从而建立不等式lna+a-10,需构造函数利用单调性解出不等式的解,而求出的取值范围。

试题解析:

fx=lnx+a1﹣x)的定义域为(0+∞),∴f′x=﹣a=

a≤0,则f′x)>0函数fx)在(0+∞)上单调递增,

a0,则当x∈0)时,f′x)>0

x∈+∞)时,f′x)<0,所以fx)在(0)上单调递增,在(+∞)上单调递减,

)由()知,当a≤0时,fx)在(0+∞)上无最大值;

a0时,fx)在x=取得最大值,最大值为f=﹣lna+a-1

∵f)>2a﹣2∴lna+a-10

ga=lna+a-1∵ga)在(0+∞)单调递增,g1=0

0a1时,ga)<0,当a1时,ga)>0∴a的取值范围为(01.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】首届世界低碳经济大会在南昌召开,本届大会以“节能减排,绿色生态”为主题.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为300吨,最多为600吨,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为 ,且每处理一吨二氧化碳得到可利用的化工产品价值为200元.
(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?
(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使该单位不亏损?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lg(x2+ax﹣a﹣1),给出下列命题:
①函数f(x)有最小值;
②当a=0时,函数f(x)的值域为R;
③若函数f(x)在区间(﹣∞,2]上单调递减,则实数a的取值范围是a≤﹣4.
其中正确的命题是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若以曲线上任意一点为切点作切线,曲线上总存在异于的点,以点为切点作切线,且,则称曲线具有“可平行性”,现有下列命题:

①函数的图象具有“可平行性”;

②定义在的奇函数的图象都具有“可平行性”;

③三次函数具有“可平行性”,且对应的两切点 的横坐标满足

④要使得分段函数的图象具有“可平行性”,当且仅当.

其中的真命题个数有()

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面分别是的中点,.

(1)求二面角的余弦值;

(2)点是线段上的动点,当直线所成的角最小时,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数为自然对数的底数), .

(1)若的极值点,且直线分别与函数的图象交于,求两点间的最短距离;

(2)若时,函数的图象恒在的图象上方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)的定义域为R,f(﹣1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把复数z的共轭复数记作 ,i为虚数单位,若z=1+i.
(1)求复数(1+z)
(2)求(1+ )z2的模.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,PA⊥平面ABCDABADADBCAPABAD=1.

(Ⅰ)若直线PBCD所成角的大小为BC的长;

(Ⅱ)求二面角BPDA的余弦值.

查看答案和解析>>

同步练习册答案