精英家教网 > 高中数学 > 题目详情

【题目】将函数的图象向左平移个单位,然后纵坐标不变,横坐标变为原来的倍,得到的图象,下面四个结论正确的是( )

A. 函数在区间上为增函数

B. 将函数的图象向右平移个单位后得到的图象关于原点对称

C. 是函数图象的一个对称中心

D. 函数上的最大值为

【答案】A

【解析】

利用函数yAsin(ωx+)的图象变换规律,求得gx)的解析式,再根据正弦函数的性质对选项逐一判断即可.

由函数fx)=2sinx的图象先向左平移个单位,可得y=2sin(x)的图象;

然后纵坐标不变,横坐标变为原来的2倍,可得ygx)=2sin(x)的图象.

对于A选项,时,x此时gx)=2sin(x)是单调递增的,故A正确;

对于B选项,将函数的图象向右平移个单位后得到y=2sin(x)不是奇函数,不满足关于原点对称,故B错误;

对于C选项,将x=代入函数解析式中,得到2sin()=2sin=;故点不是函数图象的一个对称中心,故C错误;

对于D选项,当时,x最大值为,故D错误;

故选A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】点外卖现已成为上班族解决午餐问题的一种流行趋势.某配餐店为扩大品牌影响力,决定对新顾客实行让利促销,规定:凡点餐的新顾客均可获赠10元或者16元代金券一张,中奖率分别为,每人限点一餐,且100%中奖.现有A公司甲、乙、丙、丁四位员工决定点餐试吃.

(Ⅰ) 求这四人中至多一人抽到16元代金券的概率;

(Ⅱ) 这四人中抽到10元、16元代金券的人数分别用表示,记,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的首项为,设其前n项和为,且对

1)设,求证:数列为等差数列;

2)求数列的通项公式;

3)是否存在正整数mk,使得成等差数列?若存在,求出mk的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】哥德巴赫猜想是每个大于2的偶数可以表示为两个素数的和,如,在不超过13的素数中,随机选取两个不同的数,其和为偶数的概率是________(用分数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当时,求的最小值.

(Ⅱ)若在区间上有两个极值点

(i)求实数的取值范围;

(ii)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】199个自然数中任取两个:

恰有一个偶数和恰有一个奇数;至少有一个是奇数和两个数都是奇数;

至多有一个奇数和两个数都是奇数;至少有一个奇数和至少有一个偶数.

在上述事件中,是对立事件的是  

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)曲线在点处的切线方程为,求的值;

(2)若时,,都有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦点在x轴上,一个顶点为,离心率为,过椭圆的右焦点F的直线l与坐标轴不垂直,且交椭圆于AB两点.

求椭圆的方程;

设点C是点A关于x轴的对称点,在x轴上是否存在一个定点N,使得CBN三点共线?若存在,求出定点的坐标;若不存在,说明理由;

,是线段为坐标原点上的一个动点,且,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设非直角的内角所对边的长分别为,则下列结论正确的是_____(写出所有正确结论的编号).

①“”是“”的充分必要条件

②“”是“”的充分必要条件

③“”是“”的充分必要条件

④“”是“”的充分必要条件

⑤“”是“”的充分必要条件

查看答案和解析>>

同步练习册答案