精英家教网 > 高中数学 > 题目详情
已知正项数列{an},其前n项和Sn满足10Sn=an2+5an+6且a1,a3,a15成等比数列.
(1)求数列{an}的通项an
(2)bn=20-an,Tn前n项和,求Tn的最值.
分析:(1)先根据10Sn=an2+5an+6求出a1的值,再结合10Sn-1=an-12+5an-1+6可得到(an+an-1)(an-an-1-5)=0,进而得到an-an-1=5可求出an=5n-3.
(2)根据(1)中{an}的通项an可得到bn=20-an=23-5n,再由等差数列的前n项和公式可得到Tn的表达式,进而求出Tn的最大值.
解答:解:(1)∵10Sn=an2+5an+6,①∴10a1=a12+5a1+6,解之得a1=2或a1=3.
又10Sn-1=an-12+5an-1+6(n≥2),②
由①-②得 10an=(an2-an-12)+5(an-an-1),即(an+an-1)(an-an-1-5)=0
∵an+an-1>0,∴an-an-1=5 (n≥2).
当a1=3时,a3=13,a15=73.a1,a3,a15不成等比数列∴a1≠3;
当a1=2时,a3=12,a15=72,有 a32=a1a15,∴a1=2,∴an=5n-3.
(2)∵bn=20-an=23-5n
所以Tn=
n(18+23-5n)
2
=
n(41-5n)
2
=
-5
2
(n-
41
10
) 2+
1681
20

当n=4时,Tn取得最大值42.
点评:本题主要考查求数列通项公式、等差数列的前n项和公式.考查综合运用能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正项数列{an}满足:a1=3,(2n-1)an+2=(2n+1)an-1+8n2(n>1,n∈N*
(1)求证:数列{
an
2n+1
}
为等差数列,并求数列{an}的通项an
(2)设bn=
1
an
,求数列{bn}的前n项和为Sn,并求Sn的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:称
n
a1+a2+…+an
为n个正数a1,a2,…,an的“均倒数”,已知正项数列{an}的前n项的“均倒数”为
1
2n
,则
lim
n→∞
nan
sn
(  )
A、0
B、1
C、2
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列an中,a1=2,点(
an
an+1)
在函数y=x2+1的图象上,数列bn中,点(bn,Tn)在直线y=-
1
2
x+3
上,其中Tn是数列bn的前项和.(n∈N+).
(1)求数列an的通项公式;
(2)求数列bn的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an}满足a1=1,an+1=an2+2an(n∈N+),令bn=log2(an+1).
(1)求证:数列{bn}为等比数列;
(2)记Tn为数列{
1
log2bn+1log2bn+2
}
的前n项和,是否存在实数a,使得不等式Tn<log0.5(a2-
1
2
a)
对?n∈N+恒成立?若存在,求出实数a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an},Sn=
1
8
(an+2)2

(1)求证:{an}是等差数列;
(2)若bn=
1
2
an-30
,求数列{bn}的前n项和.

查看答案和解析>>

同步练习册答案