精英家教网 > 高中数学 > 题目详情

【题目】某大型科学竞技真人秀节目挑选选手的方式为:不但要对选手的空间感知、照相式记忆能力进行考核,而且要让选手经过名校最权威的脑力测试,120分以上才有机会入围.某重点高校准备调查脑力测试成绩是否与性别有关,在该高校随机抽取男、女学生各100名,然后对这200名学生进行脑力测试.规定:分数不小于120分为入围学生,分数小于120分为未入围学生.已知男生入围24人,女生未入围80人.

1)根据题意,填写下面的2×2列联表,并根据列联表判断是否有95%以上的把握认为脑力测试后是否为入围学生与性别有关;

性别

入围人数

未入围人数

总计

男生

女生

总计

2)用分层抽样的方法从入围学生中随机抽取11名学生,求这11名学生中男、女生人数;若抽取的女生的脑力测试分数各不相同(每个人的分数都是整数),分别求这11名学生中女生测试分数平均分的最小值.

附:,其中

【答案】1)见解析,没有以上的把握认为脑力测试后是否为入围学生与性别有关;(2)女生5人,男生6人,122.

【解析】

(1)根据题意,填写列联表.根据参考公式,计算的观测值,再根据临界值表,即得结论;

2)根据分层抽样原理计算被抽到的女生人数,即得被抽到的男生人数.根据题意,被抽到的女生测试分数的平均分最小时,这5名女生的测试分数分别为,即可求平均分的最小值.

1)填写列联表如下:

性别

入围人数

未入围人数

总计

男生

24

76

100

女生

20

80

100

总计

44

156

200

的观测值

所以没有以上的把握认为脑力测试后是否为入围学生与性别有关.

2)在这11名学生中,被抽到的女生人数为(人),

被抽到的男生人数为(人)或(人).

因为入围的分数不低于120分,且每个女生的测试分数各不相同,每个人的分数都是整数.

所以这11名学生中女生测试分数的平均分的最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.曲线的极坐标方程为,曲线与曲线的交线为直线

1)求直线和曲线的直角坐标方程;

2)直线轴交于点,与曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足条件:,且是公比为的等比数列,设.

1)求出使不等式成立的的取值范围;

2)求,其中

3)设,求数列的最大项和最小项的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】仔细观察数列给出部分的数字,寻找规律,在空白处填上合适的数字.

12358__________21;(28_______14172023

324816_______64;(4_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),将曲线上各点纵坐标伸长到原来的2倍(横坐标不变)得到曲线,以坐标原点为极点,轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.

1)写出的极坐标方程与直线的直角坐标方程;

2)曲线上是否存在不同的两点(以上两点坐标均为极坐标,),使点的距离都为3?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在①,且,②,且,③,且这三个条件中任选一个,补充在下面问题中,若问题中的存在,求出和数列的通项公式与前项和;若不存在,请说明理由.

为各项均为正数的数列的前项和,满足________,是否存在,使得数列成为等差数列?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设圆C满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1,在满足条件①、②的所有圆中,求圆心到直线l:x-2y=0的距离最小的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数.

(Ⅰ)判断函数的单调性;

(Ⅱ)若时,对任意,不等式恒成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】a>0,0≤x<2π,若函数y=cos2x-asinx+b的最大值为0,最小值为-4,试求ab的值,并求使y取得最大值和最小值时的x值.

查看答案和解析>>

同步练习册答案