精英家教网 > 高中数学 > 题目详情

如果实数x,y满足数学公式,则z=|x+2y+4|的最大值________.

29
分析:先确定平面区域,再求的最大值,从而可求z=|x+2y+4|的最大值.
解答:不等式表示的平面区域为

其中C的坐标由,可得,即C(7,9)
先求的最大值
由图可知,C到直线x+2y+4=0的距离为=
∴z=|x+2y+4|的最大值为29
故答案为:29
点评:本小题主要考查线性规划问题,以及简单的转化思想和数形结合的思想,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果实数x,y满足
x≥0
y≥0
2x+y≤2
,对任意的正数a,b,不等式ax+by≤1恒成立,则a+b的取值范围是(  )
A、(0,
3
2
]
B、(0,4]
C、[
3
2
,+∞)
D、(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

如果实数x,y满足
x≥0
y≥0
2x+y≤2
,对任意的正数a,b,不等式ax+by≤1恒成立,则a+b的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如果实数x,y满足等式(x-2)2+y2=1
(1)求y-x的最大值和最小值.
(2)求x2+(y-1)2的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果实数x、y满足条件
x-y+1≥0
y+1≥0
x+y+1≤0
,那么4x•(
1
2
)y
的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如果实数x,y满足x2+y2=1,则(1+xy)(1-xy)的最小值为
 

查看答案和解析>>

同步练习册答案