精英家教网 > 高中数学 > 题目详情
1.在下列各结论中,正确的是(  )
①“p∧q”为假是“p∨q”为假的充分不必要条件;
②“p∧q”为真是“p∨q”为真的充分不必要条件;
③“p∨q”为真是“?p”为假的必要不充分条件;
④“?p”为真是“p∧q”为假的必要不充分条件.
A.①②B.②④C.②③D.③④

分析 根据复合命题之间的关系,结合充分条件和必要条件的定义进行判断即可.

解答 解:①“p∧q”为假,则p,q至少有一个为假,
“p∨q”为假,则p,q同时为假,
则“p∧q”为假是“p∨q”为假的必要不充分条件,故①错误,
②若“p∧q”为真,则p,q同时为真,
若“p∨q”为真,则p,q至少有一个真,
则“p∧q”为真是“p∨q”为真的充分不必要条件,故②正确;
③“p∨q”为真,则p,q至少有一个真,
若?p为假,则p为真命题.
则“p∨q”为真是“?p”为假的必要不充分条件;故③正确;
④若“?p”为真,则p为假命题,
若“p∧q”为假,则p,q至少有一个为假,
则“?p”为真是“p∧q”为假的充分不必要条件,故④错误,
故选:C.

点评 本题主要考查充分条件和必要条件的判断,根据复合命题真假之间的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知三棱锥O-ABC中OA、OB、OC两两垂直,OC=3,OA=x,OB=y,若x+y=4,则三棱锥体积的最大值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列函数中一定是指数函数的是(  )
A.y=5x+1B.y=x4C.y=3xD.y=-2•3x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{2x+1}{x+1}$,判断函数在区间[1,4]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.若直线y=kx+1(k∈R)与椭圆$\frac{x^2}{5}+\frac{y^2}{m}=1$恒有公共点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知平行六面体ABCD-A1B1C1D1,底面ABCD是边长为1的正方形,AA1=2,∠A1AB=∠A1AD=120°,则异面直线AC1与A1D所成角的余弦值为(  )
A.$\frac{{\sqrt{6}}}{3}$B.$\frac{{\sqrt{10}}}{5}$C.$\frac{\sqrt{15}}{5}$D.$\frac{{\sqrt{14}}}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若曲线$\frac{x^2}{a-4}+\frac{y^2}{a+5}=1$的轨迹是双曲线,则a的取值范围是(-5,4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知$|{\overrightarrow a}|=\sqrt{3},|{\overrightarrow b}|=2$,$|{\overrightarrow a}|$与$|{\overrightarrow b}|$夹角为30°,则$|{\overrightarrow a-2\overrightarrow b}|$=$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知平面向量$\overrightarrow a=(1,-\sqrt{3}),\overrightarrow b=(3,\sqrt{3})$,则向量$\overrightarrow a$与向量$\overrightarrow{a}$$+\overrightarrow{b}$的夹角为$\frac{π}{3}$.

查看答案和解析>>

同步练习册答案