【题目】已知圆C:(x﹣1)2+y2=16,F(﹣1,0),M是圆C上的一个动点,线段MF的垂直平分线与线段MC相交于点P.
(Ⅰ)求点P的轨迹方程;
(Ⅱ)记点P的轨迹为C1 , A、B是直线x=﹣2上的两点,满足AF⊥BF,曲线C1与过A,B的两条切线(异于x=﹣2)交于点Q,求四边形AQBF面积的取值范围.
【答案】解:(Ⅰ)依题意得圆心C(0,1),半径r=4, ∵线段MF的垂直平分线与线段MC相交于点P,
∴|PF|+|PC|=|PM|+|PC|=CM=4>|CF|=2.
∴点P的轨迹方程是以C,F为焦点,长轴长为4的椭圆,
即a=2,c=1,则b=22﹣1=3,
∴P的轨迹方程是 .
(Ⅱ)依题意,直线AF斜率存在且不为零,设为y=k(x+1),
令x=﹣2得A(﹣2,﹣k),同理B(﹣2, ).
设过点A的切线为y=k1(x+2)﹣k,代入
得 x+4[(2k1﹣k)2﹣3]=0.
由 ,解得 ,
同理k2= = .
联立方程组: ,解得x=﹣4.
∴ = ,当且仅当k=±1时等号成立,
∴四边形AQBF面积的取值范围是[3,+∞).
【解析】(I)利用中垂线的性质得出|PF|+|PC|=4,于是P点轨迹为椭圆,根据椭圆定义得出椭圆方程;(II)设AF的斜率为k,用k表示出A,B的坐标,设过A点的切线斜率为k1 , 联立方程组得出k1和k的关系,同理得出过B点的切线方程,再联立方程组得出Q点坐标,得出四边形面积关于k的解析式,利用不等式得出面积的范围.
科目:高中数学 来源: 题型:
【题目】制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙项目可能的最大盈利率分别为100%和50%,可能的最大亏损分别为30%和10%.投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数 f(x)=,其中 c>a>0,c>b>0.若 a,b,c 是△ABC 的三条边长,给出下列命题:
①对于x∈(-∞,1),都有 f(x)>0;
②存在 x>0,使,,不能构成一个三角形的三边长;
③若△ABC 为钝角三角形,则存在 x∈(1,2),使 f(x)=0.
则其中所有正确结论的序号是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高职院校进行自主招生文化素质考试,考试内容为语文、数学、英语三科,总分为200分.现从上线的考生中随机抽取20人,将其成绩用茎叶图记录如下:
男 | 女 | |||||||||||
15 | 6 | |||||||||||
5 | 4 | 16 | 3 | 5 | 8 | |||||||
8 | 2 | 17 | 2 | 3 | 6 | 8 | 8 | 8 | ||||
6 | 5 | 18 | 5 | 7 | ||||||||
19 | 2 | 3 |
(Ⅰ)计算上线考生中抽取的男生成绩的方差;(结果精确到小数点后一位)
(Ⅱ)从上述茎叶图180分以上的考生中任选2人作为考生代表出席座谈会,求所选考生恰为一男一女的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 (m>0)的最大值为2.
(1)求函数,f(x)在[0,π]上的单调递减区间;
(2)△ABC中,a,b,c分别是角A,B,C所对的边,C=60°,c=3,且 ,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 过点 ,且与 的交于 , .
(1) 用 表示 , 的横坐标;
(2)设以 为焦点,过点 , 且开口向左的抛物线的顶点坐标为 ,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一袋中有大小相同的4个红球和2个白球,给出下列结论:
①从中任取3球,恰有一个白球的概率是;
②从中有放回的取球6次,每次任取一球,则取到红球次数的方差为;
③现从中不放回的取球2次,每次任取1球,则在第一次取到红球的条件下,第二次再次取到红球的概率为;
④从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为.
其中所有正确结论的序号是________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com