【题目】设是椭圆 的四个顶点,菱形的面积与其内切圆面积分别为, .椭圆的内接的重心(三条中线的交点)为坐标原点.
(1)求椭圆的方程;
(2) 的面积是否为定值?若是,求出该定值,若不是,请说明理由.
【答案】(1);(2)
【解析】试题分析:
(I)由内切圆面积得半径,即为原点到直线PQ的距离,可得,又四边形PQRS的面积为,从而可得,解得得椭圆方程;
(II)可先求特殊情形下的三角形面积,即斜率不存在时,C为椭圆的左(右)顶点,求得面积为;当斜率存在时,设方程为,代入椭圆方程,并设,由韦达定理得,利用O是的重心,得表示出C点坐标,把C点坐标代入椭圆方程求得的关系式为,由圆锥曲线中的弦长公式求得弦长,求出C点到直线AB的距离,从而得三角形ABC的面积,代入刚才的关系式可得,因此结论为存在.
试题解析:
(Ⅰ)∵菱形的面积与其内切圆面积分别为,
∴,
,
联立解得, ,
故所求椭圆的方程为.
(Ⅱ)当直线斜率不存在时,
∵为的重心,∴为椭圆的左、右顶点,不妨设,
则直线的方程为,可得, 到直线的距离,
∴.
当直线的斜率存在时,设直线方程为: , , .
联立,得,
则 .
即,
, ,
∴.
∵为的重心,∴,
∵点在椭圆上,故有,
化简得.
∴ .
又点到直线的距离(是原点到距离的3倍得到).
∴ .
综上可得, 的面积为定值.
科目:高中数学 来源: 题型:
【题目】某港口的水深(米)是时间(,单位:小时)的函数,下面是每天时间与水深的关系表:
经过长期观测,可近似的看成是函数
(1)根据以上数据,求出的解析式;
(2)若船舶航行时,水深至少要米才是安全的,那么船舶在一天中的哪几段时间可以安全的进出该港?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某物流公司每天从甲地运货物到乙地,统计最近的200次可配送的货物量,可得可配送的货物量的频率分布直方图,所图所示,回答以下问题(直方图中每个小组取中间值作为该组数据的替代值).
(1)求该物流公司每天从甲地到乙地平均可配送的货物量;
(2)该物流公司拟购置货车专门运营从甲地到乙地的货物,一辆货车每天只能运营一趟,每辆车每趟最多只能装载40件货物,满载发车,否则不发车.若发车,则每辆车每趟可获利1000元;若未发车,则每辆车每天平均亏损200元.为使该物流公司此项业务的营业利润最大,该物流公司应该购置几辆货车?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】六个人按下列要求站成一排,分别有多少种不同的站法?
(1) 甲不站在两端; (2) 甲 ,乙必须相邻;
(3)甲 ,乙不相邻. (4) 甲 ,乙之间恰有两人
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列(其中第一项是,接下来的项是,再接下来的项是,依此类推)的前项和为,下列判断:
①是的第项;②存在常数,使得恒成立;③;④满足不等式的正整数的最小值是.
其中正确的序号是( )
A.①③B.①④C.①③④D.②③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区.规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80 m.经测量,点A位于点O正北方向60 m处,点C位于点O正东方向170 m处(OC为河岸),tan∠BCO=.
(1)求新桥BC的长;
(2)当OM多长时,圆形保护区的面积最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面直角坐标系中,椭圆C:的离心率是,抛物线E:的焦点F是C的一个顶点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P是E上的动点,且位于第一象限,E在点P处的切线与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.
(ⅰ)求证:点M在定直线上;
(ⅱ)直线与y轴交于点G,记△的面积为,△的面积为,求的最大值及取得最大值时点P的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(题文)某研究小组在电脑上进行人工降雨模拟实验,准备用A、B、C三种人工降雨方式分别对甲、乙、丙三地实施人工降雨,其实验数据统计如下:
方式 | 实施地点 | 大雨 | 中雨 | 小雨 | 模拟实验总次数 |
A | 甲 | 4次 | 6次 | 2次 | 12次 |
B | 乙 | 3次 | 6次 | 3次 | 12次 |
C | 丙 | 2次 | 2次 | 8次 | 12次 |
假定对甲、乙、丙三地实施的人工降雨彼此互不影响,请你根据人工降雨模拟实验的统计数据:
(1)求甲、乙、丙三地都恰为中雨的概率;
(2)考虑到旱情和水土流失,如果甲地恰需中雨即达到理想状态,乙地必须是大雨才达到理想状态,丙地只要是小雨或中雨即达到理想状态,记“甲、乙、丙三地中达到理想状态的个数”为随机变量ξ,求随机变量ξ的分布列和均值E(ξ).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com