精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=(1+$\sqrt{3}$tanx)•cos2x,
(Ⅰ)当x∈[$\frac{π}{6}$,$\frac{π}{2}$)时,求函数f(x)的取值范围;
(Ⅱ)若在△ABC中,AC=2,BC=2$\sqrt{3}$,f($\frac{A}{2}$)=$\frac{3}{2}$,求△ABC的面积.

分析 (I)将切化弦及降次公式和两角和的正弦公式化简,求出f(x)的最大值和最小值;
(II)由f($\frac{A}{2}$)=$\frac{3}{2}$求出A,再利用余弦定理解出AB,代入面积公式S=$\frac{1}{2}$AB•AC•sinA即可.

解答 解:(I)f(x)=(1+$\sqrt{3}$$\frac{sinx}{cosx}$)cos2x=cos2x+$\sqrt{3}$sinxcosx=$\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$
=sin(2x+$\frac{π}{6}$)+$\frac{1}{2}$,
当x∈[$\frac{π}{6}$,$\frac{π}{2}$)时,2x$+\frac{π}{6}$∈[$\frac{π}{2}$,$\frac{7π}{6}$),
∴$-\frac{1}{2}$<sin(2x$+\frac{π}{6}$)≤1,
∴0<sin(2x$+\frac{π}{6}$)$+\frac{1}{2}$≤$\frac{3}{2}$,
∴f(x)的取值范围是(0,$\frac{3}{2}$].
(II)∵f(A)=sin(A+$\frac{π}{6}$)+$\frac{1}{2}$=$\frac{3}{2}$,
∴sin(A+$\frac{π}{6}$)=1,
∵A∈(0,π),∴A=$\frac{π}{3}$,
在△ABC中,由余弦定理得:BC2=AB2+AC2-2AC•AB•cosA,
即(2$\sqrt{3}$)2=AB2+4-2AB,
解得AB=4,或AB=-2(舍).
∴S△ABC=$\frac{1}{2}•AB•AC•sinA$=$\frac{1}{2}×4×2×\frac{\sqrt{3}}{2}$=2$\sqrt{3}$.

点评 本题考查了三角函数求值及解三角形,解题关键是将f(x)进行化简.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.如图,PA是圆O的切线,切点为A,过PA的中点M作割线交圆O于点B,C,连接PC交圆于点E,连接PB.
(1)求证:△PMB∽△CMP;
(2)若PM=PE=2,求CE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在棱长为2的正方体ABCD-A1B1C1D1中,E、F分别为棱AD、C1D1的中点,
(Ⅰ) 分别作出四边形BED1F在平面ABCD、ABB1A1、BCC1B1内的投影,并求出投影的面积;
投影一的面积为4;
投影二的面积为4;
投影三的面积为4;
(Ⅱ) 直线BF与ED1相交吗?答案:不;求直线BE与D1F所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在圆锥PO中,已知PO=$\sqrt{2}$,圆O的直径AB=2,C是弧AB的中点,D为AC的中点.
(1)求异面直线PD和BC所成的角
(2)求直线OC和平面PAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,AB是⊙O的直径,点C是⊙O上一点,AD⊥DC于D,且AC平分∠DAB,延长DC交AB的延长线于点P.
(1)求证:PC2=PA•PB;
(2)若3AC=4BC,⊙O的直径为7,求线段PC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知在等差数列{an}中,a1=-1,公差d=2,an-1=15,则n的值为(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图1,在直角梯形ABCD中,AD∥BC,AD⊥AB,AB=BC=$\frac{1}{2}$AD,E是AD的中点,O是AC与BE的交点,将△ABE沿BE折起到△A1BE的位置,如图2,
(1)证明:平面A1DC⊥平面A1OC;
(2)若平面A1BE⊥平面BCDE,求直线CB与平面A1BE所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图,在正三棱柱ABC-A1B1C1中,侧棱长为2$\sqrt{2}$,底面三角形的边长为2,则BC1与侧面ACC1A1所成角的大小为30°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数f(x)=x2+1,若f(f(x0))=2,则x0=±1.

查看答案和解析>>

同步练习册答案