精英家教网 > 高中数学 > 题目详情
15.设函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x}-a,x<1}\\{1-\frac{1}{x},x≥1}\end{array}\right.$,当a=0时,f(x)的值域为[0,+∞);若f(x)恰有2个零点,则实数a的取值范围是a>$\frac{1}{2}$.

分析 由分段函数可得,分段函数值域,从而得到函数的值域;再由分段函数分别确定方程的根的个数即可.

解答 解:当a=0时,x<1时,
f(x)=$(\frac{1}{2})^{x}$>$\frac{1}{2}$;
当x≥1时,0≤1-$\frac{1}{x}$<1;
故f(x)的值域为[0,+∞);
解:当x≥1时,f(x)有一个零点x=1,
故当x<1时,f(x)还有一个零点,
即$(\frac{1}{2})^{x}$-a=0有解,
∵$(\frac{1}{2})^{x}$>$\frac{1}{2}$,
∴a>$\frac{1}{2}$;
故实数a的取值范围是a>$\frac{1}{2}$.
故答案为:[0,+∞),a>$\frac{1}{2}$.

点评 本题考查了分段函数的应用及函数的零点的求法及应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知函数$f(x)=\left\{\begin{array}{l}(a-3)x+2,x≤1\\{x^{1-a}},x>1\end{array}\right.$是(-∞,+∞)上的减函数,那么a的取值范围是(  )
A.(1,3)B.(1,2]C.[2,3)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.记关于x的不等式$\frac{x-a}{x+1}$<0的解集为P,不等式|x-1|≤1的解集为Q.
(1)若a=2,求P;
(2)若x∈Q是x∈P的充分条件,求正实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={x∈R|-1<x<1},B={x∈R|(x-2)(x+1)<0},则A∩B=(  )
A.(0,2)B.(-1,1)C.(-∞,-1)∪(2,+∞)D.(-∞,-1)∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知定义在R上的函数f(x)的图象如图,则x•f′(x)>0的解集为(  )
A.(-∞,0)∪(1,2)B.(1,2)C.(-∞,1)D.(-∞,1)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若集合A={x|x2-4x≤0},B={x|x2-2x>0},则A∩B=(2,4].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={1,2,4,5},集合B=(1,3,5},则A∪B=(  )
A.{1,5}B.{1,2,3,4,5}C.{2,4}D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x2-4x+4
(1)若g(x)=f(x)-cx为偶函数,求实数c的值;
(2)若h(x)=$\frac{f(x)}{x}$,用定义证明函数h(x)在区间[2,+∞)上是递增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知平面向量$\overrightarrow{a}$、$\overrightarrow{b}$、$\overrightarrow{c}$满足<$\overrightarrow{a}$,$\overrightarrow{b}$>=60°,且{|$\overrightarrow{a}$|,|$\overrightarrow{b}$|,|$\overrightarrow{c}$|}={1,2,3},则|$\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}$|的最大值是(  )
A.$\sqrt{7}+3$B.$\sqrt{19}+1$C.$\sqrt{13}+2$D.$\sqrt{15}+3$

查看答案和解析>>

同步练习册答案