精英家教网 > 高中数学 > 题目详情

【题目】【2017银川一中高考模拟文一个正方体的平面展开图及该正方体直观图的示意图如图所示,在正方体中,设BC的中点为M,GH的中点为N。

(1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由);

(2)证明:直线MN∥平面BDH;

(3)过点M,N,H的平面将正方体分割为两部分,求这两部分的体积比.

【答案】(1)详见解析;(2)详见解析. (3) 3∶1

【解析】 (1)点F,G,H的位置如图所示.

(2)证明:连接BD,设O为BD的中点,连接OM,OH,AC,BH,MN。

∵M,N分别是BC,GH的中点,

∴OM∥CD,且OM=CD,NH∥CD,且NH=CD,

∴OM∥NH,OM=NH,则四边形MNHO是平行四边形,∴MN∥OH,

又∵MN平面BDH,OH平面BDH,∴MN∥平面BDH。

(3)由(2)知OM∥NH,OM=NH,连接GM,MH,过点M,N,H的平面就是平面GMH,它将正方体分割为两个同高的棱柱,高都是GH,底面分别是四边形BMGF和三角形MGC,

体积比等于底面积之比,即3∶1。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】【2017届河北省衡水中学高三上学期六调】已知函数,其中均为实数,为自然对数的底数.

(1)求函数的极值;

(2)设,若对任意的恒成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(-x2+x-1)ex,其中e是自然对数的底数.

(1)求曲线f(x)在点(1,f(1))处的切线;

(2)若方程f(x)=x3x2+m有3个不同的根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017兰州高考模拟.在多面体ABCDEF中,底面ABCD是梯形,四边形ADEF是正方形,AB∥DC,AB=AD=1,CD=2,AC=EC=

(1)求证:平面EBC⊥平面EBD;

(2)设M为线段EC上一点,且3EM=EC,试问在线段BC上是否存在一点T,使得MT∥平面BDE,若存在,试指出点T的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司生产电饭煲,每年需投入固定成本40万元,每生产1万件还需另投入16万元的变动成本,设该公司一年内共生产电饭煲万件并全部销售完,每一万件的销售收入为万元,且),该公司在电饭煲的生产中所获年利润为(万元),(注:利润=销售收入-成本)

1写出年利润(万元)关于年产量(万件)的函数解析式,并求年利润的最大值;

2为了让年利润不低于2360万元,求年产量的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“开门大吉”是中央电视台推出的娱乐节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌

的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否的人数如图所示.

(1) 完成下列2×2列联表(见答题纸);

(2)判断是否有90%的把握认为猜对歌曲名称与否和年龄有关;说明你的理由.(下面的临界值表供参考)

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

(参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x2-3x+2≤0},集合B={y|y=x2-2x+a},集合C={x|x2-ax-4≤0}.命题p:A∩B≠;命题q:AC.

(1)若命题p为假命题,求实数a的取值范围;

(2)若命题p∧q为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究某学科成绩(满分100分)是否与学生性别有关,采用分层抽样的方法,从高二年级抽取了30名男生和20名女生的该学科成绩,得到下图所示女生成绩的茎叶图.其中抽取的男生中有21人的成绩在80分以下,规定80分以上为优秀(含80分).

(1)请根据题意,将2×2列联表补充完整;

优秀

非优秀

总计

男生

女生

总计

50

(2)据此列联表判断,是否有90%的把握认为该学科成绩与性别有关?

附: ,其中.

参考数据

≤2.706时,无充分证据判定变量A,B有关联,可以认为两变量无关联;

>2.706时,有90%的把握判定变量A,B有关联;

>3.841时,有95%的把握判定变量A,B有关联;

>6.635时,有99%的把握判定变量A,B有关联.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用二分法求的近似值(精确度0.1)

查看答案和解析>>

同步练习册答案