精英家教网 > 高中数学 > 题目详情
3.比较下列各组数的大小:
(1)1.9与1.9-3
(2)0.7${\;}^{2-\sqrt{3}}$与0.70.3
(3)0.60.4与0.40.6

分析 利用指数函数的单调性,即可得出结论.

解答 解:(1)1.9>1,-π<-3,∴1.9<1.9-3
(2)0<0.7<1,2-$\sqrt{3}$<0.3,0.7${\;}^{2-\sqrt{3}}$>0.70.3
(3)0.60.4<0.60.4=1,1=0.40>0.40.6,∴0.60.4<0.40.6

点评 本题考查指数函数的单调性,考查大小比较,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.若椭圆$\frac{x^2}{5}+\frac{y^2}{m}=1$的离心率为$e=\frac{1}{2}$,则m的值为(  )
A.$\frac{20}{3}$B.$\frac{15}{4}$或$\frac{20}{3}$C.$\frac{15}{4}$D.$\frac{20}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若f(x)=ex,则$\lim_{△x→0}\frac{{f({1+2△x})-f(1)}}{△x}$=(  )
A.eB.2eC.-eD.$\frac{1}{2}e$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在正方体ABCD-A1B1C1D1中,O为正方形ABCD中心,则A1O与平面ABCD所成角的正切值为(  )
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{2}$C.1D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$(x∈R).
(1)判断函数f(x)的奇偶性;
(2)用定义判断函数f(x)的单调性;
(3)解不等式f(1-m)+f(1-m2)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列幂函数中过点(0,0),(1,1)的偶函数是(  )
A.$y={x^{\frac{1}{2}}}$B.y=x2C.y=x-1D.y=x3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x2+1
(1)求f(a)-f(a+1)
(2)若f(x)=x+3,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=\frac{lnx}{x}-\frac{k}{x}$(k∈R).
(1)若函数f(x)的最大值为h(k),k≠1,试比较h(k)与$\frac{1}{{{e^{2k}}}}$的大小;
(2)若不等式${x^2}f(x)+\frac{1}{x+1}≥0$与$k≥-x+4\sqrt{x}-\frac{15}{4}$在[1,+∞)上均恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ax2-x+2,
(1)当a=1时,当x∈[1,+∞)时,求函数$\frac{f(x)}{x}$的最小值;
(2)解关于x的不等式f(x)-2ax≤0.

查看答案和解析>>

同步练习册答案