精英家教网 > 高中数学 > 题目详情

ABCD-A1B1C1D1是正方体,点O为正方体对角线的交点,过点O的任一平面α,正方体的八个顶点到平面α的距离作为集合A的元素,则集合A中的元素个数最多为


  1. A.
    3个
  2. B.
    4个
  3. C.
    5个
  4. D.
    6个
B
分析:根据题意,由正方体的结构特点,可得O是线段A1C的中点,过点O作任一平面α,设A1C与α所成的角为θ,分析可得点A1与C到平面α的距离相等,同理可得B与D1,A与C1,D与B1到平面α的距离相等,则可得集合A中的元素个数最多为4个,即可得答案.
解答:解:根据题意,如图,点O为正方体对角线的交点,则O是线段A1C的中点,
过点O作任一平面α,设A1C与α所成的角为θ,
分析可得点A1与C到平面α的距离相等,均为
同理B与D1到平面α的距离相等,
A与C1到平面α的距离相等,
D与B1到平面α的距离相等,
则集合A中的元素个数最多为4个;
故选B.
点评:本题考查正方体的几何结构,注意正方体中心的性质,即体对角线的交点,从而分析得到体对角线的两个端点到平面α的距离相等.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知长方体ABCD-A1B1C1D1中,棱AB=BC=3,BB1=4,连接B1C,在CC1上有点E,使得A1C⊥平面EBD,BE交B1C于F.
(1)求ED与平面A1B1C所成角的大小;
(2)求二面角E-BD-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

在边长为a的正方体ABCD-A1B1C1D1中,E、F分别为AB与C1D1的中点.
(1)求证:四边形A1ECF是菱形;
(2)求证:EF⊥平面A1B1C;
(3)求A1B1与平面A1ECF所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,M,N,K分别是正方体ABCD-A1B1C1D1的棱AB,CD,C1D1的中点.
(1)求证:AN∥平面A1MK;
(2)求证:平面A1B1C⊥平面A1MK.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知长方体ABCD-A1B1C1D1,AB=BC=1,BB1=2,连接B1C,过B点作B1C.
的垂线交CC1于E,交B1C于F.
(I)求证:A1C⊥平面EBD;
(Ⅱ)求直线DE与平面A1B1C所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正四棱柱ABCDA1B1C­1D1中,AB=2,AA1=3.

(I)求证:A1CBD

(II)求直线A1C与侧面BB1C1C所成的角的正切值;

20070406

 
(III)求二面角B1CDB的正切值.

查看答案和解析>>

同步练习册答案