精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=2sin2x+2$\sqrt{3}$sinxcosx-1的图象关于(φ,0)对称,则φ的值可以是(  )
A.$-\frac{π}{6}$B.$\frac{π}{6}$C.$-\frac{π}{12}$D.$\frac{7π}{12}$

分析 由倍角公式化简f(x)为Asin(ωx+φ)的形式,由f(φ)=0可求得φ的可能取值.

解答 解:f(x)=2sin2x+2$\sqrt{3}$sinxcosx-1
=$\sqrt{3}$sin2x-cos2x=2($\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$cos2x)
=2sin(2x-$\frac{π}{6}$).
∵f(x)的图象关于点(φ,0)对称,
∴2sin(2φ-$\frac{π}{6}$)=0,
则2φ-$\frac{π}{6}$=kπ,φ=$\frac{kπ}{2}$+$\frac{π}{12}$,k∈Z.
取k=0时,φ=$\frac{π}{12}$.k=1时,φ=$\frac{7π}{12}$.
∴φ的值可以是$\frac{7π}{12}$.
故选:D.

点评 本题考查三角函数中的恒等变换应用,考查了y=Asin(ωx+φ)型函数的对称性,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.在正四棱柱ABCD-A1B1C1D1中,顶点B1到对角线BD1的距离和到平面A1BCD1的距离分别为h和d,则$\frac{h}{d}$的取值范围为($\frac{2\sqrt{3}}{3}$,$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知△ABC的面积为3,且满足0≤$\overrightarrow{AB}$•$\overrightarrow{AC}$≤6,设$\overrightarrow{AB}$和$\overrightarrow{AC}$的夹角为θ.
(1)求θ的取值范围;
(2)求函数f(θ)=sin2($\frac{π}{4}$+θ)-$\sqrt{3}$cos2θ的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.经过A(-2,0),B(-5,3)两点的直线的倾斜角(  )
A.45°B.135°C.90°D.60°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.实验人员获取一组数据如表:则拟合效果最接近的一个为(  )
x1.99345.16.12
y1.54.047.51218.01
A.y=2x-2B.y=$\frac{1}{2}$(x2-1)C.y=log2xD.y=${(\frac{1}{2})^x}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若tanθ=2,则sin2θ+sinθcosθ-2cos2θ=(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$\frac{\sqrt{7}}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知二次函数f(x)=ax2+bx+c满足:对所有实数x都有f(x+1)-f(x)=2x且f(0)=1.
(1)求f(x)的解析式;      
(2)求f(x)在[0,2]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知角x的终边与单位圆的交点的坐标为P(a,b),若a=$\frac{1}{2}$,①求b,②求tan(2x-$\frac{π}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知AD为半圆O的直径,AB为半圆O的切线,割线BMN交AD的延长线于点C,且BM=MN=NC,AB=2$\sqrt{2}$.
(Ⅰ)求圆心O到割线BMN的距离;
(Ⅱ)求CD的长.

查看答案和解析>>

同步练习册答案