精英家教网 > 高中数学 > 题目详情

【题目】如图,OA是南北方向的一条公路,OB是北偏东45°方向的一条公路,某风景区的一段边界为曲线C.为方便游客光,拟过曲线C上的某点分别修建与公路OA,OB垂直的两条道路PM,PN,且PM,PN的造价分别为5万元/百米,40万元/百米,建立如图所示的直角坐标系xoy,则曲线符合函数y=x+ (1≤x≤9)模型,设PM=x,修建两条道路PM,PN的总造价为f(x)万元,题中所涉及的长度单位均为百米.

(1)求f(x)解析式;
(2)当x为多少时,总造价f(x)最低?并求出最低造价.

【答案】
(1)

解:在如图所示的直角坐标系中,因为曲线C的方程为

所以点P坐标为

直线OB的方程为x﹣y=0,

则点P到直线x﹣y=0的距离为

又PM的造价为5万元/百米,PN的造价为40万元/百米.

则两条道路总造价为


(2)

解:因为

所以

令f'(x)=0,得x=4,列表如下:

x

(1,4)

4

(4,9)

f'(x)

0

f(x)

单调递减

极小值

单调递增

所以当x=4时,函数f(x)有最小值,最小值为

答:(1)两条道路PM,PN总造价f(x)为 (1≤x≤9);

(2)当x=4时,总造价最低,最低造价为30万元.

(注:利用三次均值不等式

当且仅当 ,即x=4时等号成立,照样给分.)


【解析】(1)求出P的坐标,直线OB的方程,点P到直线x﹣y=0的距离,即可求f(x)解析式;(2)利用导数的方法最低造价.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别为内角A,B,C所对边的边长,且C=,a+b=λc(其中λ>1).

(1)若λ=时,证明:△ABC为直角三角形;

(2)若·λ2,且c=3,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设Sn为数列{an}的前n项和,已知a1≠0,2an﹣a1=S1Sn , n∈N*
(1)求a1a2 , 并求数列{an}的通项公式,
(2)求数列{nan}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥P﹣ABCD中,侧面PAD⊥底面ABCD,底面ABCD是边长为2的正方形,又PA=PD,∠APD=60°,E,G分别是BC,PE的中点

(1)求证:AD⊥PE
(2)求二面角E﹣AD﹣G的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P(x0,3)与点Q(x0,4)分别在椭圆=1与抛物线y2=2px(p>0).

(1)求抛物线的方程;

(2)设点A(x1,y1),B(x2,y2)(y1≤0,y2≤0)是抛物线上的两点,∠AQB的角平分线与x轴垂直,求直线ABy轴上的截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一台机器生产某种产品,如果生产出一件甲等品可获利50元,生产出一件乙等品可获利30元,生产出一件次品,要赔20元,已知这台机器生产出甲等品、乙等品和次品的概率分别为0.6,0.3,和0.1,则这台机器每生产一件产品平均预期可获利________元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“中国式过马路”存在很大的交通安全隐患.某调查机构为了解路人对“中国式过马路”的态度是否与性别有关,从马路旁随机抽取30名路人进行了问卷调查,得到了如下列联表:

项目

男性

女性

总计

反感

10

不反感

8

总计

30

已知在这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是.

(1)请将上面的列联表补充完整(直接写结果,不需要写求解过程),并据此资料分析反感“中国式过马路”与性别是否有关?

(2)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列和数学期望.

附:K2

.

P(K2≥k0)

0.10

0.05

0.010

0.005

k0

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l:(3+t)x﹣(t+1)y﹣4=0(t为参数)和圆C:x2+y2﹣6x﹣8y+16=0:
(1)t∈R时,证明直线l与圆C总相交:
(2)直线l被圆C截得弦长最短,求此弦长并求此时t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆=1(a>b>0)的左、右焦点分别为F1,F2,过左焦点F1(-2,0)x轴的垂线交椭圆于P,Q两点,PF2y轴交于E,A,B是椭圆上位于PQ两侧的动点.

(1)求椭圆的离心率e和标准方程;

(2)∠APQ=∠BPQ,直线AB的斜率kAB是否为定值?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

同步练习册答案