精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=alnxx+bx的图象过点($\frac{1}{e}$,$\frac{1}{e}$),且在点(1,f(1))处的切线与直线x+y-e=0垂直(e为自然数的底数,且e=2.71828…)
(1)求a、b的值;
(2)若存在x0∈[$\frac{1}{e}$,e],使得不等式f(x0)+$\frac{1}{2}$x02-$\frac{1}{2}$tx0≥-$\frac{3}{2}$成立,求实数t的取值范围.

分析 (1)求得f(x)的导数,求得切线的斜率,结合两直线垂直的条件,代入已知点,解方程可得a=1,b=0;
(2)由(1)知f(x)=xlnx,由题意可得$f(x)+\frac{1}{2}{x^2}-\frac{1}{2}tx≥-\frac{3}{2}$,即$xlnx+\frac{1}{2}{x^2}-\frac{1}{2}tx≥-\frac{3}{2}$,则$t≤2lnx+x+\frac{3}{x}$.构造函数$h(x)=2lnx+x+\frac{3}{x},x∈[{\frac{1}{e},e}]$,求出导数,判断单调性,求得最小值即可得到t的范围.

解答 解:(1)∵f(x)=alnxx+bx=axlnx+bx,
∴f′(x)=alnx+a+b.
又点(1,f(1))处的切线与直线x+y-e=0垂直,
∴f'(1)=a+b=1.
又∵f(x)=alnxx+bx的图象过点$({\frac{1}{e},-\frac{1}{e}})$,
∴$f({\frac{1}{e}})=-\frac{a}{e}+\frac{b}{e}=-\frac{1}{e}$,即a-b=1,
∴a=1,b=0;
(2)由(1)知f(x)=xlnx,
由题意可得$f(x)+\frac{1}{2}{x^2}-\frac{1}{2}tx≥-\frac{3}{2}$,即$xlnx+\frac{1}{2}{x^2}-\frac{1}{2}tx≥-\frac{3}{2}$,
则$t≤2lnx+x+\frac{3}{x}$.
若存在 ${x_0}∈[{\frac{1}{e},e}]$,使得不等式$f({x_0})+\frac{1}{2}{x_0}^2-\frac{1}{2}t{x_0}≥-\frac{3}{2}$成立,
只需t小于或等于$2lnx+x+\frac{3}{x},x∈[{\frac{1}{e},e}]$的最大值.
设$h(x)=2lnx+x+\frac{3}{x},x∈[{\frac{1}{e},e}]$,
则$h'(x)=\frac{{({x+3})({x-1})}}{x^2}$,当$x∈[{\frac{1}{e},1}]$时,h'(x)<0;
当x∈[1,e]时,h'(x)>0.
故h(x)在$[{\frac{1}{e},1}]$上单调递减,在[1,e]上单调递增.
∵$h(e)=2lne+e+\frac{3}{e}=2+e+\frac{3}{e}$,$h({\frac{1}{e}})=2ln\frac{1}{e}+\frac{1}{e}+3e=-2+\frac{1}{e}+3e$,
∴$h({\frac{1}{e}})-h(e)=2e-\frac{2}{e}-4>0$,∴$h({\frac{1}{e}})>h(e)$,
故当$,x∈[{\frac{1}{e},e}]$时,h(x)的最大值为$h({\frac{1}{e}})=-2+\frac{1}{e}+3e$,
故$t≤-2+\frac{1}{e}+3e$,
即实数t的取值范围是:$({-∞,-2+\frac{1}{e}+3e}]$.

点评 本题考查导数的运用:求切线的斜率和单调区间、极值和最值,考查不等式恒成立问题的解法,注意运用参数分离和构造函数求导,判断单调性求得最值,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知抛物线方程y2=2px(p>0),点A(x1,y1),点B(x2,y2)是抛物线上的两个动点,A、B两点分别位于x轴两侧,已知当OA⊥OB时,x1x2=4p2,y1y2=-4p2,且直线AB过定点(2p,0)
(1)若$\overrightarrow{OA}$$•\overrightarrow{OB}$=3,当p=1时,求x1x2,y1y2的值;
(2)若$\overrightarrow{OA}$$•\overrightarrow{OB}$=t(t≥0),试证明直线AB过定点,并求出定点坐标;
(3)在(2)条件下,kOA为直线OA的斜率,kOB为直线OB的斜率,若弦AB中点M在直线y=2上,证明kOA+KOB为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\left\{\begin{array}{l}{a•{2}^{x},x≥0}\\{lo{g}_{2}(-x+3),x<0}\end{array}\right.$(a∈R),若f[f(-1)]=1,则a=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设f(x)的定义域为(0,+∞),且在(0,+∞)上是增函数,f(xy)=f(x)+f(y),f(2)=1,解不等式f(x)+f(x-3)≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图所示,四边形ABCD为直角梯形,AB∥CD,AB⊥BC,△ABE为等边三角形,且平面ABCD⊥平面ABE,AB=2CD=2BC=2,P为CE中点.
(1)求证:AB⊥DE;
(2)求三棱锥D-ABP的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在5件产品中,有4件正品,从中任取2件,2件都是正品的概率是(  )
A.$\frac{4}{5}$B.$\frac{1}{5}$C.$\frac{2}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ax2+bx+c(a>0且bc≠0).
(Ⅰ)若|f(0)|=|f(1)|=|f(-1)|=1,试求f(x)的解析式;
(Ⅱ)令g(x)=2ax+b,若g(1)=0,又f(x)的图象在x轴上截得的弦的长度为l,且0<l≤2,试比较b、c的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.过抛物线y2=$\frac{1}{2}$x的焦点作倾斜角为30°的直线与抛物线交于P、Q两点,则|PQ|=(  )
A.$\sqrt{3}$B.2C.3D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图圆柱的底面周长为4π,高为2,圆锥的底面半径是1,则该几何体的体积为$\frac{22π}{3}$

查看答案和解析>>

同步练习册答案