精英家教网 > 高中数学 > 题目详情
已知
a
=(cosα,sinα)
b
=(cosβ,sinβ)
c
=(1,0)

(1)若
a
b
=
2
3
,记α-β=θ,求sin2θ-sin(
π
2
+θ)
的值;
(2)若α≠
2
,β≠kπ(k∈Z),且
a
(
b
+
c
)
,求证:tanα=tan
β
2
分析:(1)由
a
b
=
2
3
求得cosθ=
2
3
,把要求的式子化为1-cos2θ-cosθ,把cosθ=
2
3
代入运算求得结果.
(2)由
a
(
b
+
c
)
,可得cosαsinβ-(1+cosβ)sinα=0,推出 tanα=
sinβ
1+cosβ
,再利用二倍角公式化简即得所证.
解答:(1)∵
a
b
= cosαcosβ+sinαsinβ= cos(α-β)
=
2
3
,∴cosθ=
2
3
.…(3分)
sin2θ-sin(
π
2
+θ)=1-cos2θ-cosθ
=-
1
9
.…(7分)
(2)∵
b
+
c
=(1+cosβ,sinβ)
a
(
b
+
c
)

∴cosαsinβ-(1+cosβ)sinα=0.…(9分)
又∵α≠
2
,β≠kπ(k∈Z),∴tanα=
sinβ
1+cosβ
…(12分)
=
2sin
β
2
cos
β
2
2cos_
β
2
=tan
β
2
.…(14分)
点评:本题考查三角函数的恒等变换及化简求值,两个向量共线的性质,式子的变形是解题的关键和难点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
a
=(cosα,sinα)
b
=(cosβ,sinβ)
,其中0<α<β<π.
(1)求证:
a
+
b
a
-
b
互相垂直;
(2)若k
a
+
.
b
a
-k
.
b
的长度相等,求α-β的值(k为非零的常数).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•静安区一模)(文)已知
a
=(cosα,3sinα),
b
=(3cosβ,sinβ),(0<β<α<
π
2
)
是平面上的两个向量.
(1)试用α、β表示
a
b

(2)若
a
b
=
36
13
,且cosβ=
4
5
,求α的值(结果用反三角函数值表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(cosθ,sinθ),
b
=(cosα,sinα)
,则下列说法不正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=
cosωx,sinωx
b
=
cosωx+
3
sinωx,
3
cosωx-sinωx
(ω>0),函数f(x)=
a
b
的最小正周期为π
(1)求函数f(x)的单调递减区间及对称中心;
(2)求函数f(x)在区间
π
4
π
2
上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2005•朝阳区一模)已知
a
=(cosα,sinα),
b
=(cosβ,sinβ),0<α<β<π

(I)求|
a
|
的值;
(II)求证:
a
+
b
a
-
b
互相垂直;
(III)设|k
a
+
b
|=|
a
-k
b
|,k∈R
且k≠0,求β-α的值.

查看答案和解析>>

同步练习册答案