精英家教网 > 高中数学 > 题目详情
若△ABC的三个内角满足sinA:sinB:sinC=5:11:13,则△ABC
 

(A)一定是锐角三角形         (B)一定是直角三角形
(C)一定是钝角三角形         (D)可能是锐角三角形,也可能是钝角三角形.
分析:根据正弦定理化简已知的等式得到a,b及c的比值,根据比例设出a,b及c,然后利用余弦定理表示出cosC,把表示出的a,b及c代入求出cosC的值,发现cosC小于0,根据C的范围得到角C为钝角,即三角形为钝角三角形.
解答:解:由正弦定理
a
sinA
=
b
sinB
=
c
sinC

得到sinA:sinB:sinC=a:b:c=5:11:13,
设a=5k,b=11k,c=13k,
根据余弦定理得cosC=
a2+b2-c2
2ab
=
25k2+121k2-169k2
110k
=-
23
110
<0,
∵C∈(0,π),∴C为钝角,
则△ABC一定为钝角三角形.
故选C.
点评:此题考查了三角形形状的判断,要求学生灵活运用正弦定理及余弦定理化简求值,遇到比例往往根据比例设出各边来解决问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

3、若△ABC的三个内角满足sinA:sinB:sinC=5:12:13,则△AB形状一定是
直角
角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

若△ABC的三个内角满足sinA:sinB:sinC=2:3:4,则△ABC(  )
A、一定是直角三角形B、一定是钝角三角形C、一定是锐角三角形D、可能是锐角三角形,也可能是钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

若△ABC的三个内角满足sinA:sinB:sinC=5:11:13,则△ABC是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若△ABC的三个内角成等差数列,三边成等比数列,则△ABC是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•卢湾区二模)若△ABC的三个内角的正弦值分别等于△A'B'C'的三个内角的余弦值,则△ABC的三个内角从大到小依次可以为
4
π
8
π
8
4
,另两角不惟一,但其和为
π
4
4
π
8
π
8
4
,另两角不惟一,但其和为
π
4
(写出满足题设的一组解).

查看答案和解析>>

同步练习册答案