精英家教网 > 高中数学 > 题目详情

【题目】已知.

1)若直线与圆相切,求被圆所截得弦长取最小值时直线的斜率;

2时,表示圆,问是否存在一条直线,使得它和所有的圆都没有公共点?如果存在,求出直线,若不存在,说明理由;

3)若满足不等式和等式的点集是一条线段,求取值范围.

【答案】1;(2)存在,;(3.

【解析】

(1)画出图像分析可得, 直线与直线垂直时被圆所截得弦长取最小值.

再根据垂直的直线斜率之积为-1求解即可.
(2)时代入

,,故猜测存在一条直线,使得它和所有的圆都没有公共点,再证明即可.

(3) 的解集为两条直线, 为两圆之间的部分,数形结合列式求解即可.

(1),

圆心,半径

圆心,半径

因为当被圆所截得弦长取最小值时,圆心到直线的距离最大.

的距离,当且仅当直线与直线垂直时取得为最大值,此时斜率,故直线斜率
(2) 存在,和所有的圆都没有公共点.

证明:由题,

,

变形得

,

有交点,

有解.上式减去倍的下式有:

有解.

即圆与直线有交点,圆半径

但圆心距离 .

故圆与直线无交点.

和所有的圆都没有公共点.

(3)由题得的解集为两条直线,

即为两圆 之间的部分.

又若不等式和等式的点集是一条线段,则需注意临界条件.

与圆相切时,,

与圆相切时,

又因为到所求的所有的距离都大于半径,故无需考虑圆对形成线段的影响.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是正方形,.

(1)证明:平面

(2)若的中点,是棱上一点,且平面,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的焦距是,长轴长是短轴长3倍,任作斜率为的直线与椭圆交于两点(如图所示),且点在直线的左上方.

1)求椭圆的方程;

2)若,求的面积;

3)证明:的内切圆的圆心在一条定直线上。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,欲在一四边形花坛内挖一个等腰三角形的水池,且,已知四边形中,是等腰直角三角形,米,是等腰三角形,的大小为,要求的三个顶点在花坛的边缘上(即在四边形的边上),设点到水池底边的距离为,水池的面积为平方米.

1)求的长;

2)试将表示成关于的函数,并求出的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数fx)有两个零点,求实数a的取值范围;

(2)若a=3,且对任意的x1∈[-1,2],总存在,使gx1)-fx2)=0成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂产生的废气经过过滤后排放,在过滤过程中,污染物的数量p(单位:毫克/升)不断减少,已知p与时间t(单位:小时)满足p(t)=,其中p0t=0时的污染物数量.又测得当t∈[0,30]时,污染物数量的变化率是-10ln 2,则p(60)=(  )

A.150毫克/升B.300毫克/升

C.150ln 2毫克/升D.300ln 2毫克/升

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)是函数的一个极值点,试求的单调区间;

(2),是否存在实数a,使得在区间上的最大值为4?若存在,求出实数a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地要建造一个边长为2(单位:)的正方形市民休闲公园,将其中的区域开挖成一个池塘,如图建立平面直角坐标系后,点的坐标为,曲线是函数图像的一部分,过边上一点在区域内作一次函数)的图像,与线段交于点(点不与点重合),且线段与曲线有且只有一个公共点,四边形为绿化风景区.

1)求证:

2)设点的横坐标为

①用表示两点的坐标;

②将四边形的面积表示成关于的函数,并求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某公司生产某款手机的年固定成本为40万元,每生产1万只还需另投入16万元.设该公司一年内共生产该款手机万只并全部销售完,每万只的销售收入为万元,且

(1)写出年利润(万元)关于年产量(万只)的函数解析式;

(2)当年产量为多少万只时,该公司在该款手机的生产中所获得的利润最大?并求出最大利润.

查看答案和解析>>

同步练习册答案