精英家教网 > 高中数学 > 题目详情

已知点P()在第三象限,则角的终边落在 (     )

A.第一象限     B.第二象限   C.第三象限    D.第四象限

 

【答案】

B

【解析】P()在第三象限,故当角在第二象限  符合,正切,余弦均负。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)
的图象过点P(
π
12
,0)
,且图象上与点P最近的一个最低点是Q(-
π
6
,-2)

(Ⅰ)求f(x)的解析式;
(Ⅱ)若f(α+
π
12
)=
3
8
,且α为第三象限的角,求sinα+cosα的值;
(Ⅲ)若y=f(x)+m在区间[0,
π
2
]
上有零点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2008年广东地区数学科全国各地模拟试题直线与圆锥曲线大题集 题型:044

已知三点A(2,3),B(5,4),C(7,10),点P满足(λ∈R).

(Ⅰ)λ为何值时,点P在函数y=2x=1的图象上;

(Ⅱ)设点P在第三象限,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源:2015届四川省资阳市高一上学期期末质量检测数学试卷(解析版) 题型:解答题

(本小题满分12分)

已知函数的图象过点,且图象上与点P最近的一个最低点是

(Ⅰ)求的解析式;

(Ⅱ)若,且为第三象限的角,求的值;

(Ⅲ)若在区间上有零点,求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省菏泽市高三5月高考冲刺题理科数学试卷(解析版) 题型:解答题

已知函数的图象过坐标原点O,且在点处的切线的斜率是.

(Ⅰ)求实数的值; 

(Ⅱ)求在区间上的最大值;

(Ⅲ)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由.

【解析】第一问当时,,则

依题意得:,即    解得

第二问当时,,令,结合导数和函数之间的关系得到单调性的判定,得到极值和最值

第三问假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

(Ⅰ)当时,,则

依题意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①当时,,令

变化时,的变化情况如下表:

0

0

+

0

单调递减

极小值

单调递增

极大值

单调递减

。∴上的最大值为2.

②当时, .当时, ,最大值为0;

时, 上单调递增。∴最大值为

综上,当时,即时,在区间上的最大值为2;

时,即时,在区间上的最大值为

(Ⅲ)假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

,则代入(*)式得:

,而此方程无解,因此。此时

代入(*)式得:    即   (**)

 ,则

上单调递增,  ∵     ∴,∴的取值范围是

∴对于,方程(**)总有解,即方程(*)总有解。

因此,对任意给定的正实数,曲线上存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上

 

查看答案和解析>>

同步练习册答案