精英家教网 > 高中数学 > 题目详情
16.若函数f(x)的定义域为[0,4],求函数g(x)=$\frac{f(2x)}{x-1}$的定义域.

分析 由f(x)的定义域求出f(2x)的定义域,结合分式的分母不为0取交集得答案.

解答 解:∵函数f(x)的定义域为[0,4],
∴由0≤2x≤4,得0≤x≤2,
又x-1≠0,得x≠1.
∴函数g(x)=$\frac{f(2x)}{x-1}$的定义域为[0,1)∪(1,2].

点评 本题考查函数的定义域及其求法,关键是掌握该类问题的解决方法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.函数y=cos(2x-$\frac{π}{3}$)在x={x|x=kπ+$\frac{π}{6}$k∈Z}时,取到最大值1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若f′(x0)=3,则$\underset{lim}{h→0}\frac{f({x}_{0}-2h)-f({x}_{0}+h)}{6h}$等于(  )
A.-$\frac{2}{3}$B.-$\frac{3}{2}$C.$\frac{3}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知ω>0,在函数y=sinωx与y=cosωx的图象的交点中,相邻两个交点的横坐标之差为1,则ω=(  )
A.1B.2C.πD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知实数x,y满足$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-1≥0}\\{3x-y-3≤0}\end{array}\right.$,则x-2y的取值范围是[-4,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知A={0,1},B={-1,0,1,3},f是从A到B映射的对应关系,则满足f(0)>f(1)的映射有(  )
A.5个B.6个C.7个D.8个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如果命题P(n)对于n=k(k∈N*)时成立,那么它对n=k+2也成立.若P(n)对于n=2时成立,则下列结论正确的是(  )
A.P(n)对所有正整数n成立B.P(n)对所有正偶数n成立
C.P(n)对所有正奇数n成立D.P(n)对所有大于1的正整数n成立

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图所示,在正方体ABCD-A1B1C1D1中.
(1)求A1B与平面AA1D1D所成的角;
(2)求A1B与平面BB1D1D所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.从数字1、2、3、4、5、6中随机取出3个不同的数字构成一个三位数,则这个三位数能被3整除的概率为(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

同步练习册答案