精英家教网 > 高中数学 > 题目详情
在直三棱柱中,的中点,上一点,且
(1)求证: 平面
(2)求三棱锥的体积;
(3)试在上找一点,使得平面
(1同解析; (2)三棱锥的体积=;(3)当时,平面. 
(1)证明:中点  ,又直三棱柱中:底面
底面平面平面
.在矩形中:
   ,即
,        平面;        
(2)解:平面 
=;    
(3)当时,平面
证明:连,设,连
 为矩形,中点,
中点,
平面平面  平面.         
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(12分)如图,在梯形中,的中点,将沿折起,使点到点的位置,使二面角的大小为
(1)求证:
(2)求直线与平面所成角的正弦值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知:四棱锥P-ABCD,,底面ABCD是直角梯形,,且AB∥CD,, 点F为线段PC的中点,
(1)求证: BF∥平面PAD;
(2) 求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在长方体ABCD—中,AB=2,,E为的中点,连结ED,EC,EB和DB,
(1)求证:平面EDB⊥平面EBC;
(2)求二面角E-DB-C的正切值.
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在棱长为1的正方体ABCD—A1B1C1D1中,点E是棱BC的中点,点F是棱
CD上的动点.
(I)试确定点F的位置,使得D1E⊥平面AB1F;
(II)当⊥平面AB1F时,求二面角C1—EF—A的大小(结果用反三角函数值表示).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图四棱锥中,底面正方形的边长为2
(1)求点到平面的距离;
(2)求直线与平面所成角的大小;
(3)求以为半平面的二面角的正切值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,底面是正方形的四棱锥,平面⊥平面===2.
(I)求证:
(II)求直线与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

水平桌面儿上放置着一个容积为V的密闭长方体玻璃容器ABCD—A1B1C1D1,其中装有V的水。
(1)把容器一端慢慢提起,使容器的一条棱AD保持在桌面上,这个过程中水的形状始终是柱体;(2)在(1)中的运动过程中,水面始终是矩形;(3)把容器提离桌面,随意转动,水面始终过长方体内的一个定点;(4)在(3)中水与容器的接触面积始终不变。
以上说法正确的是_____.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下图中不可能围成正方体的是(   )

查看答案和解析>>

同步练习册答案