精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=cos2(x-$\frac{π}{6}$)-sin2x,其中x∈R.
(1)求函数f(x)的值域;
(2)已知α为第二象限角,且f($\frac{α}{2}$-$\frac{π}{6}$)=$\frac{\sqrt{3}}{3}$,求$\frac{1+cos2α-sin2α}{\sqrt{2}sin(α-\frac{π}{4})}$的值.

分析 (1)利用余弦加法定理、降阶公式、三函数恒等式、二倍角公式推导出f(x)=$\frac{\sqrt{3}}{2}$sin(2x+$\frac{π}{3}$),由此能求出函数f(x)的值域.
(2)由已知$\frac{\sqrt{3}}{2}sinα=\frac{\sqrt{3}}{3}$,从而sinα=$\frac{2}{3}$,cosα=-$\frac{\sqrt{5}}{3}$,进而求出cos2α,sin2α,sin($α-\frac{π}{4}$)的值,由此能求出$\frac{1+cos2α-sin2α}{\sqrt{2}sin(α-\frac{π}{4})}$的值.

解答 解:(1)∵f(x)=cos2(x-$\frac{π}{6}$)-sin2x
=(cosxcos$\frac{π}{6}$+sinxsin$\frac{π}{6}$)2-sin2x
=($\frac{\sqrt{3}}{2}cosx+\frac{1}{2}sinx$)2-sin2x
=$\frac{3}{4}co{s}^{2}x+\frac{1}{4}si{m}^{2}x+\frac{\sqrt{3}}{2}sinxcosx$-sin2x
=$\frac{3}{4}(co{s}^{2}x-si{n}^{2}x)+\frac{\sqrt{3}}{2}sinxcosx$
=$\frac{3}{4}cos2x+\frac{\sqrt{3}}{4}sin2x$
=$\frac{\sqrt{3}}{2}$sin(2x+$\frac{π}{3}$),
∴函数f(x)的值域为[-$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{2}$].
(2)∵α为第二象限角,且f($\frac{α}{2}$-$\frac{π}{6}$)=$\frac{\sqrt{3}}{3}$,
∴$\frac{\sqrt{3}}{2}sinα=\frac{\sqrt{3}}{3}$,解得sinα=$\frac{2}{3}$,∴cosα=-$\sqrt{1-(\frac{2}{3})^{2}}$=-$\frac{\sqrt{5}}{3}$,
∴cos2α=1-2sin2α=1-2×$\frac{4}{9}$=$\frac{1}{9}$,sin2α=2sinαcosα=2×$\frac{2}{3}×(-\frac{\sqrt{5}}{3})$=-$\frac{4\sqrt{5}}{9}$,
sin($α-\frac{π}{4}$)=sin$αcos\frac{π}{4}$-cos$αsin\frac{π}{4}$=$\frac{2}{3}×\frac{\sqrt{2}}{2}+\frac{\sqrt{5}}{3}×\frac{\sqrt{2}}{2}=\frac{2\sqrt{2}+\sqrt{10}}{6}$,
∴$\frac{1+cos2α-sin2α}{\sqrt{2}sin(α-\frac{π}{4})}$=$\frac{1+\frac{1}{9}+\frac{4\sqrt{5}}{9}}{\sqrt{2}×\frac{2\sqrt{2}+\sqrt{10}}{6}}$=$\frac{10+4\sqrt{5}}{9}×\frac{3}{2+\sqrt{5}}$=$\frac{2\sqrt{5}}{3}$.

点评 本题考查三角函数值的求法,是中档题,解题时要认真审题,注意余弦加法定理、降阶公式、三函数恒等式、二倍角公式、同角三角函数关系式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图所示,梯形ABCD中,AB∥CD,AD=BC=5,AB=10,CD=4,动点P自B点出发沿路线BC→CD→DA运动,最后到达A点你的P的运动路程为x,△ABP面积为y,试求y=f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.甲、乙、丙、丁4人任意排成一行,求甲和乙相邻的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.f(x)=x|x-a|(a<0)在(m,n)上有最大、小值,则m,n的取值范围$\frac{1+\sqrt{3}}{2}$a≤m<a,$\frac{a}{2}$<n≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.用0到9这10个数字,可组成多少个没有重复数字的五位偶数?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某人向正东方向走2$\sqrt{3}$千米后,再沿北偏西60°方向走了3千米,结果他离出发点恰好x千米,那么x的值为(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.$\sqrt{21-6\sqrt{3}}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知P(m,n)是直线3x+4y-12=0上的一点,求(m-1)2+(n-2)2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,M为曲线y=-$\frac{4}{x}$上的一点.过点M作x轴、y轴的垂线.垂足分别为E、F.分别交直线y=$\frac{\sqrt{3}}{3}$x+m于点D、C两点.若直线y=$\frac{\sqrt{3}}{3}$x+m与y轴交于点A.与x轴相交于点B;
(1)若四边形MEOF为正方形,求M的坐标;
(2)求AD•BC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.A为三角形ABC的一个内角.若sinA+cosA=$\frac{12}{25}$,2sinBcosC=sinA,则这个三角形的形状不可能为(  )
A.锐角三角形B.钝角三角形
C.等腰且钝角三角形D.等腰三角形

查看答案和解析>>

同步练习册答案