精英家教网 > 高中数学 > 题目详情
14.命题p:?x∈R,|x-1|+|x+1|≥a,命题q:?x∈R,使得不等式log2(x2-2x+17)<a有解,命题p,q有且仅有一个命题成立,求实数a的取值范围.

分析 对于命题p:|x-1|+|x+1|=$\left\{\begin{array}{l}{2x,x≥1}\\{2,-1<x<1}\\{-2x,x≤-1}\end{array}\right.$,由于?x∈R,|x-1|+|x+1|≥a,可得(|x-1|+|x+1|)min≥a.
对于命题q:利用二次函数的单调性可得:x2-2x+17=(x-1)2+16≥16,由于x∈R,使得不等式log2(x2-2x+17)<a有解,可得$[lo{g}_{2}({x}^{2}-2x+17)]_{min}$<a.
命题p,q有且仅有一个命题成立,即p与q必然一真一假.解出即可.

解答 解:对于命题p:|x-1|+|x+1|=$\left\{\begin{array}{l}{2x,x≥1}\\{2,-1<x<1}\\{-2x,x≤-1}\end{array}\right.$,可得(|x-1|+|x+1|)min=2,∵?x∈R,|x-1|+|x+1|≥a,∴2≥a.
对于命题q:∵x2-2x+17=(x-1)2+16≥16,∴x2-2x+17≥16.∵?x∈R,使得不等式log2(x2-2x+17)<a有解,∴log216<a,即a>4.
命题p,q有且仅有一个命题成立,即p与q必然一真一假.
∴$\left\{\begin{array}{l}{a≤2}\\{a≤4}\end{array}\right.$或$\left\{\begin{array}{l}{a>2}\\{a>4}\end{array}\right.$,
解得a≤2或a>4.
∴实数a的取值范围是a≤2或a>4.

点评 本题考查了复合命题真假的判定方法、含绝对值的不等式的解法、二次函数的单调性、对数函数的单调性、恒成立问题的等价转化方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.若五个人排成一排,则甲乙两人之间仅有一人的概率是$\frac{3}{10}$.(结果用数值表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.《中华人民共和国个人所得税》规定,公民全月工资、薪金所得不超过2000元的部分不必纳税,超过2000元的部分为全月应纳税所得额.此项税款按表分段累计计算:
级数全月应纳税所得额税率
1不超过500元的部分5%
2超过500元至2000元的部分10%
3超过2000元至5000元的部分15%
(1)请写出月工资、薪金的个人所得税y关于月工资、薪金收入x(0<x≤5000)的函数表达式;
(2)某人一月份应交纳税此项税款为26.78元,那么他当月的工资,薪金所得是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知命题α:|a-1|<2,β:方程x2+(a+2)x+1=0没有正根,求实数a的取值范围,可得命题α,β有且只有一个是真命题.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.0°~90°间的角可表示为(  )
A.{a|0°<a<90°}B.{a|0°≤a<90°}C.{a|0°<a≤90°}D.{a|0°≤a≤90°}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.直线y=kx+1与曲线mx2+5y2-5m=0(m>0)恒有公共点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=lg$\frac{x+3}{x-3}$是(  )
A.奇函数B.偶函数
C.既是奇函数又是偶函数D.非奇非偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.解下列不等式,并将结果用集合和区间两种形式表示:-x2+2x-3>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知向量$\overrightarrow a=({1,0})$,$\overrightarrow b=(cosθ,sinθ)$,$θ∈[{-\frac{π}{4},\frac{π}{2}}]$,则$|{\overrightarrow a+\overrightarrow b}|$的取值范围是(  )
A.$[0,\sqrt{2}]$B.[0,2]C.[1,2]D.$[\sqrt{2},2]$

查看答案和解析>>

同步练习册答案