精英家教网 > 高中数学 > 题目详情

【题目】如图,已知抛物线C顶点在坐标原点,焦点F在Y轴的非负半轴上,点是抛物线上的一点.

(1)求抛物线C的标准方程

(2)若点P,Q在抛物线C上,且抛物线C在点P,Q处的切线交于点S,记直线 MP,MQ的斜率分别为k1,k2,且满足,当P,Q在C上运动时,△PQS的面积是否为定值?若是,求出△PQS的面积;若不是,请说明理由.

【答案】(1);(2)定值4

【解析】

1)设出抛物线方程,将M坐标代入,计算方程,即可。(2)设出直线PQ的方程,结合得到,计算S的坐标,结合点到直线距离公式,计算所求三角形高,结合直线截抛物线所得弦长,计算PQ,计算面积,即可。

1)设抛物线的方程为M(-2,1)点坐标代入方程中,解得

2)设,设直线PQ的方程为,代入抛物线方程,得到,则,结合,而

,代入,得到所以

,解得

P点的切线斜率为,过Q切线斜率为,则PS的方程为QS的方程为,联解这两个方程,得到S的坐标为,故点S的直线PQ的距离为,而PQ的长度为,故面积为

,故为定值。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在梯形ABCD,AD//BC,ABC=,ADC=PA⊥平面ABCDPA=.

(1)求直线AD到平面PBC的距离;

(2)求出点A到直线PC的距离;

(3)在线段AD上是否存在一点F,使点A到平面PCF的距离为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中为全等的正三角形,且平面平面,平面平面

(1)证明:

(2)求点到平面的距离

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为点,其离心率为,短轴长为.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)过点的直线与椭圆交于两点,过点的直线与椭圆交于两点,且,证明:四边形不可能是菱形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过抛物线焦点的直线与抛物线交于两点,与圆交于两点,若有三条直线满足,则的取值范围为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,点为直线上任一点,过点作抛物线的两条切线,切点分别为

1)证明三点的纵坐标成等差数列;

2)已知当点坐标为时,,求此时抛物线的方程;

3)是否存在点,使得点关于直线的对称点在抛物线上,其中点满足,若存在,求点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国北京世界园艺博览会期间,某工厂生产三种纪念品,每一种纪念品均有精品型和普通型两种,某一天产量如下表:(单位:个)

纪念品

纪念品

纪念品

精品型

普通型

现采用分层抽样的方法在这一天生产的纪念品中抽取个,其中种纪念品有个.

1)求的值;

)从种精品型纪念品中抽取个,其某种指标的数据分别如下:,把这个数据看作一个总体,其均值为,方差为,求的值;

3)用分层抽样的方法在种纪念品中抽取一个容量为的样木,从样本中任取个纪念品,求至少有个精品型纪念品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个袋子中有4个红球,2个白球,若从中任取2个球,则这2个球中有白球的概率是  

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABC-A1B1C1中,AB=AA1=AC=2,∠BAC=A1AC=45°,∠BAA1=60°F为棱AC的中点,E在棱BC上,且BE=2EC

(Ⅰ)求证:A1B∥平面EFC1

(Ⅱ)求三棱柱ABC-A1B1C1的体积.

查看答案和解析>>

同步练习册答案