精英家教网 > 高中数学 > 题目详情

【题目】从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:

质量指标值分组

[75,85)

[85,95)

[95,105)

[105,115)

[115,125)

频数

6

26

38

22

8


(1)作出这些数据的频数分布直方图;
(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中间值来代表这种产品质量的指标值);
(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的85%”的规定?

【答案】
(1)解:由已知作出频率分布表为:

质量指标值分组

[75,85)

[85,95)

[95,105)

[105,115)

[115,125)

频数

6

26

38

22

8

频率

0.06

0.26

0.38

0.22

0.08

由频率分布表作出这些数据的频率分布直方图为


(2)解:质量指标值的样本平均数为 = =100,

质量指标值的样本方差为s2=(﹣20)2×0.06+(﹣10)2×0.26+0×0.38+102×0.22+202×0.08=104,

∴这种产品质量指标的平均数估计值为100,方差的估计值为104


(3)解:依题意 =68%<80%.

∴该企业生产的这种产品不符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定


【解析】(1)由已知作出频率分布表,由此能作出作出这些数据的频率分布直方图.(2)由频率分布直方图能求出质量指标值的样本平均数及方差.(3)质量指标值不低于95的产品所占比例的估计值.由于该估计值小于0.8,故不能认为该企业生产的这种产品“质量指标值不低于95 的产品至少要占全部产品80%的规定.
【考点精析】掌握频率分布直方图是解答本题的根本,需要知道频率分布表和频率分布直方图,是对相同数据的两种不同表达方式.用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABC﹣A1B1C1所有的棱长均为2,A1B= ,A1B⊥AC.
(Ⅰ)求证:A1C1⊥B1C;
(Ⅱ)求直线AC和平面ABB1A1所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= sin(ωx+φ)(ω>0,﹣ <φ< ),A( ,0)为f(x)图象的对称中心,B,C是该图象上相邻的最高点和最低点,若BC=4,则f(x)的单调递增区间是(
A.(2k﹣ ,2k+ ),k∈Z
B.(2kπ﹣ π,2kπ+ π),k∈Z
C.(4k﹣ ,4k+ ),k∈Z
D.(4kπ﹣ π,4kπ+ π),k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a2=2,其前n项和Sn满足: (n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若 ,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个样本a,3,5,7的平均数是b,且a,b分别是数列{2n2}(n∈N*)的第2项和第4项,则这个样本的方差是(
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读程序框图,运行相应的程序,则输出的T值为(
A.22
B.24
C.39
D.41

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=eax(a≠0).
(1)当 时,令 (x>0),求函数g(x)在[m,m+1](m>0)上的最小值;
(2)若对于一切x∈R,f(x)﹣x﹣1≥0恒成立,求a的取值集合;
(3)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机的对入院50人进行了问卷调查得到了如下的列联表:

患心肺疾病

不患心肺疾病

合计

5

10

合计

50

已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为
(Ⅰ)请将上面的列联表补充完整;
(Ⅱ)是否有99.5%的把握认为患心肺疾病与性别有关?说明你的理由;
(Ⅲ)已知在患心肺疾病的10位女性中,有3位又患胃病.现在从患心肺疾病的10位女性中,选出3名进行其他方面的排查,记选出患胃病的女性人数为ξ,求ξ的分布列,数学期望以及方差;大气污染会引起各种疾病,试浅谈日常生活中如何减少大气污染.
下面的临界值表供参考:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式K2= 其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面A1B1C1 , AA1=AC=BC=1,∠ACB=90°,D是A1B1的中点,F是BB1上的点,AB1 , DF交于点E,且AB1⊥DF,则下列结论中不正确的是(
A.CE与BC1异面且垂直
B.AB1⊥C1F
C.△C1DF是直角三角形
D.DF的长为

查看答案和解析>>

同步练习册答案