分析 (1)设椭圆的方程为$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0),运用离心率公式和内切圆的性质以及三角形的面积公式,计算即可得到a,b,c,进而得到椭圆方程;
(2)设出直线l的方程为x=my+1,代入椭圆方程,运用韦达定理和弦长公式,再设直线x=my,代入椭圆方程,运用弦长公式,化简可得|AB|,再由计算即可得到所求常数λ.
解答 解:(1)设椭圆的方程为 $\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0),
由题意可得2b=2$\sqrt{3}$c,$\sqrt{{a}^{2}+{b}^{2}}=\sqrt{7}$,a2-b2=c2,
解得a=2,b=$\sqrt{3}$,c=1,
即有椭圆的方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(2)设l的方程为x=my+1,M(x1,y1),N(x2,y2),
由$\left\{\begin{array}{l}x=my+1\\ \frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1\end{array}\right.$得(3m2+4)y2+6my-9=0,
即有y1+y2=-$\frac{6m}{4+3{m}^{2}}$,y1y2=-$\frac{9}{4+3{m}^{2}}$,
|MN|=$\sqrt{1+{m}^{2}}$•$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=$\sqrt{1+{m}^{2}}$•$\sqrt{(\frac{6m}{4+3{m}^{2}})^{2}+\frac{36}{4+3{m}^{2}}}$=$\frac{12(1+{m}^{2})}{4+3{m}^{2}}$,
设A(x3,y3),B(x4,y4),
由x=my代入椭圆方程可得
消去x,并整理得y2=$\frac{12}{4+3{m}^{2}}$,
|AB|=$\sqrt{1+{m}^{2}}$•|y3-y4|=$\sqrt{1+{m}^{2}}$•$\frac{4\sqrt{3}}{\sqrt{4+3{m}^{2}}}$,
即有$\frac{|AB{|}^{2}}{\left|MN\right|}$=$\frac{48(1+{m}^{2})}{4+3{m}^{2}}$•$\frac{4+3{m}^{2}}{12(1+{m}^{2})}$=4.
故存在常数λ=4,使得|AB|2=4|MN|.
点评 本题考查椭圆的方程的求法,注意运用椭圆的离心率公式和内切圆的性质,考查弦长的求法,注意运用直线方程和椭圆方程联立,运用韦达定理和弦长公式,考查化简整理的运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | ②④ | B. | ②③ | C. | ①③ | D. | ①④ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | y=±$\frac{1}{4}$x | B. | y=±$\frac{1}{3}$x | C. | y=±$\frac{1}{2}$x | D. | y=±$\frac{\sqrt{3}}{3}$x |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | mn>0 | B. | m>1,且n>1 | C. | m>0,且n<0 | D. | m>0,且n>0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com