A. | 2477 | B. | 2427 | C. | 2427.5 | D. | 2477.5 |
分析 由已知数列递推式利用累加法求得数列通项公式,则答案可求.
解答 解:由${a_{n+1}}={a_n}+\frac{n}{2}$,且a1=2,得
${a}_{2}={a}_{1}+\frac{1}{2}$,
${a}_{3}={a}_{2}+\frac{2}{2}$,
${a}_{4}={a}_{3}+\frac{3}{2}$,
…
${a}_{n}={a}_{n-1}+\frac{n-1}{2}$(n≥1).
累加得:${a}_{n}={a}_{1}+\frac{1}{2}[1+2+…+(n-1)]$=$2+\frac{1}{2}×\frac{n(n-1)}{2}=2+\frac{{n}^{2}-n}{4}$.
∴a99 =$2+\frac{99×100}{4}$=2427.5.
故选:C.
点评 本题考查数列递推式,考查了累加法求数列的通项公式,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com