已知公差大于零的等差数列{an}的前n项和为Sn,且满足:a3·a4=117,a2+a5=22.
(1)求通项an;
(2)若数列{bn}满足bn=,是否存在非零实数c使得{bn}为等差数列?若存在,求出c的值;若不存在,请说明理由.
(1)an=1+(n-1)×4=4n-3(2)c=-
(1)由等差数列的性质得,a2+a5=a3+a4=22,所以a3、a4是关于x的方程x2-22x+117=0的解,又公差大于零,所以a3=9,a4=13.
易知a1=1,d=4,故通项为an=1+(n-1)×4=4n-3.
(2)由(1)知Sn==2n2-n,
所以bn==.
方法一 所以b1=,b2=,b3=(c≠0).
令2b2=b1+b3,解得c=-.
当c=-时,bn==2n,
当n≥2时,bn-bn-1=2.
故当c=-时,数列{bn}为等差数列.
方法二 当n≥2时,
bn-bn-1=
=,
欲使{bn}为等差数列,
只需4c-2=2(2c-1)且-3c=2c(c-1) (c≠0)
解得c=-.
科目:高中数学 来源: 题型:
Sn |
n+c |
64bn |
(n+9)bn+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:
Sn | n+c |
查看答案和解析>>
科目:高中数学 来源: 题型:
Sn | ||
n-
|
bn |
(n+36)bn+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:
Sn | n+c |
查看答案和解析>>
科目:高中数学 来源: 题型:
n | (2n+1)Sn |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com