精英家教网 > 高中数学 > 题目详情
已知{an}是等差数列,d为公差且不为0,a1和d均为实数,它的前n项和记作Sn,设集合A={(an)|n∈N*},B={(x,y)x2-y2=1,x,y∈R}.试问下列结论是否正确,如果正确,请给予证明;如果不正确,请举例说明:
(1)若以集合A中的元素作为点的坐标,则这些点都在同一条直线上;
(2)A∩B至多有一个元素;
(3)当a1≠0时,一定有A∩B≠∅.
【答案】分析:(1)在等差数列中,写出数列的前n项和的公式,表达出集合中的元素,得到点的坐标适合直线的方程.
(2)列出方程组,利用消元法求出方程组的解,验证这个方程组只有一个解,得到这个集合至多有一个元素.
(3)验证当首项为1,公差为1时,集合A中的元素作为点的坐标,其横、纵坐标均为正,由于a1=1≠0,如果A∩B≠∅,根据(2)的结论,A∩B至多有一个元素(x,y),当a1≠0时,一定有A∩B≠∅是不正确的.
解答:解:(1)在等差数列{an}中,对一切n∈N*,有Sn=,则
这表明点(an)适合方程y=(x+a1),
于是点(an)均在直线y=x+a1上.
(2)设(x,y)∈A∩B,
则x,y是方程组的解,
由方程组消去y得2a1x+a12=-4,
当a1=0时,方程2a1x+a12=-4无解,
此时A∩B=∅;
当a1≠0时,
方程2a1x+a12=-4只有一个解x=
此时,方程组只有一解,
故上述方程组至多有解
∴A∩B至多有一个元素.
(3)取a1=1,d=1,对一切的n∈N*
有an=a1+(n-1)d=n>0,>0,
这时集合A中的元素作为点的坐标,其横、纵坐标均为正,
另外,由于a1=1≠0,如果A∩B≠∅,
那么根据(2)的结论,A∩B至多有一个元素(x,y),
而x==-<0,y=
=-<0,这样的(x,y)∉A,产生矛盾,故a1=1,d=1时,A∩B=∅,
∴当a1≠0时,一定有A∩B≠∅是不正确的.
点评:本题考查解析几何与数列的综合题目,这是一个中档题目,对于数列的应用考查的比较多,这种题目可以作为高考卷的压轴题目出现,题目中对于最后一问的证明要注意应用前面的结论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
i
=(1,0),
jn
=(cos2
2
,sin
2
),
Pn
=(an,sin
2
)(n∈N+),数列{an}
满足:a1=1,a2=1,an+2=(i+
jn
)•
Pn

(I)求证:数列{a2k-1}是等差数;数列{a2k}是等比数列;(其中k∈N*);
(II)记an=f(n),对任意的正整数n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn是等差数{an}的前n项和,已知S6=36,Sn=324,若Sn-6=144(n>6),则n等于

A.15                 B.16             C.17                D.18

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
i
=(1,0),
jn
=(cos2
2
,sin
2
),
Pn
=(an,sin
2
)(n∈N+),数列{an}
满足:a1=1,a2=1,an+2=(i+
jn
)•
Pn

(I)求证:数列{a2k-1}是等差数;数列{a2k}是等比数列;(其中k∈N*);
(II)记an=f(n),对任意的正整数n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年重庆市南开中学高三(上)期末数学试卷(文科)(解析版) 题型:解答题

已知满足:
(I)求证:数列{a2k-1}是等差数;数列{a2k}是等比数列;(其中k∈N*);
(II)记an=f(n),对任意的正整数n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范围.

查看答案和解析>>

同步练习册答案