精英家教网 > 高中数学 > 题目详情

【题目】已知的顶点 边上的中线所在的直线方程为 边上的高所在直线的方程为

)求的顶点的坐标.

若圆经过不同的三点,且斜率为的直线与圆相切于点,求圆的方程.

【答案】(1);(2

【解析】试题分析:

由题意可知直线的方程为: 与直线CD联立可得C点的坐标为,设,则的中点,代入方程,解得,所以

由题意可得圆的弦的中垂线方程为,圆心坐标为,圆心在直线上,则据此可得圆心,半径,所求圆方程为

试题解析:

边上的高所在直线的方程为

所以直线的方程为:

又直线的方程为:

联立得,解得,所以

,则的中点,代入方程

解得,所以

)由 可得,圆的弦的中垂线方程为

注意到也是圆的弦,所以圆心在直线上,

设圆心坐标为

因为圆心在直线上,所以

又因为斜率为的直线与圆相切于点,所以

,整理得

由①②解得

所以圆心,半径

故所求圆方程为,即

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆,直线.

1)若直线与圆交于不同的两点,时,求的值.

2)若是直线上的动点,过作圆的两条切线,切点为,探究:直线是否过定点;

3)若为圆的两条相互垂直的弦,垂足为,求四边形的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的上、下焦点分别为,上焦点到直线 4x+3y+12=0的距离为3,椭圆C的离心率e=

(I)若P是椭圆C上任意一点,求的取值范围;

(II)设过椭圆C的上顶点A的直线与椭圆交于点B(B不在y轴上),垂直于的直线与交于点M,与轴交于点H,若,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小萌大学毕业后,家里给了她10万元,她想办一个“萌萌”加工厂,根据市场调研,她得出了一组毛利润(单位:万元)与投入成本(单位:万元)的数据如下:

投入成本

0.5

1

2

3

4

5

6

毛利润

1.06

1.25

2

3.25

5

7.25

9.98

为了预测不同投入成本情况下的利润,她想在两个模型中选一个进行预测.

(1)根据投入成本2万元和4万元的两组数据分别求出两个模型的函数解析式,请你根据给定数据选出一个较好的函数模型进行预测(不必说明理由),并预测她投入8万元时的毛利润;

(2)若小萌准备最少投入2万元开办加工厂,请预测加工厂毛利润率的最大值并说明理由.(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(12)如图所示,函数的一段图象过点

1)求函数的表达式;

2)将函数的图象向右平移个单位,得函数的图象,求函数的最大值,并求此时自变量的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过抛物线y2=2px(p>0)焦点F的直线与抛物线交于A,B两点,作AC,BD垂直抛物线的准线l于C,D,其中O为坐标原点,则下列结论正确的是 . (填序号)

②存在λ∈R,使得 成立;
=0;
④准线l上任意一点M,都使得 >0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

讨论的单调区间;

时,上的最小值为,求上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个口袋中装有标号为个小球,其中标号的小球有个,标号的小球有个,标号的小球有个,现从口袋中随机摸出个小球.

)求摸出个小球标号之和为偶数的概率.

)用表示摸出个小球的标号之和,写出的分布列,并求的数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)若为增函数,试求实数的取值范围.

)当,若存在,使成立,试确定实数的取值范围.

)设函数,求证:

i

ii

查看答案和解析>>

同步练习册答案