精英家教网 > 高中数学 > 题目详情
在△ABC中,a,b,c分别为内角A、B、C的对边,且2asinA=(2b-c)sinB+(2c-b)sinC.
(Ⅰ)求角A的大小;
(Ⅱ)若sinB+sinC=
3
,试判断△ABC的形状.
分析:(Ⅰ)利用余弦定理表示出cosA,然后根据正弦定理化简已知的等式,整理后代入表示出的cosA中,化简后求出cosA的值,由A为三角形的内角,利用特殊角的三角函数值即可求出A的度数;
(Ⅱ)由A为60°,利用三角形的内角和定理得到B+C的度数,用B表示出C,代入已知的sinB+sinC=
3
中,利用两角和与差的正弦函数公式及特殊角的三角函数值化简,整理后再利用两角和与差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,由B的范围,求出这个角的范围,利用特殊角的三角函数值求出B为60°,可得出三角形ABC三个角相等,都为60°,则三角形ABC为等边三角形.
解答:解:(Ⅰ)由2asinA=(2b-c)sinB+(2c-b)sinC,
利用正弦定理化简得:2a2=(2b-c)b+(2c-b)c,…(2分)
整理得:bc=b2+c2-a2
∴cosA=
b2+c2-a2
2bc
=
1
2
,…(4分)
又A为三角形的内角,
则A=60°;…(5分)
(Ⅱ)∵A+B+C=180°,A=60°,
∴B+C=180°-60°=120°,即C=120°-B,…(6分)
代入sinB+sinC=
3
得:sinB+sin(120°-B)=
3
,…(7分)
∴sinB+sin120°cosB-cos120°sinB=
3
,…(8分)
3
2
sinB+
3
2
cosB=
3
,即sin(B+30°)=1,…(10分)
∴0<B<120°,
∴30°<B+30°<150°,
∴B+30°=90°,即B=60°,…(11分)
∴A=B=C=60°,
则△ABC为等边三角形.…(12分).
点评:此题考查了三角形形状的判断,正弦、余弦定理,两角和与差的正弦函数公式,等边三角形的判定,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,∠A、∠B、∠C所对的边长分别是a、b、c.满足2acosC+ccosA=b.则sinA+sinB的最大值是(  )
A、
2
2
B、1
C、
2
D、
1+
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a<b<c,B=60°,面积为10
3
cm2,周长为20cm,求此三角形的各边长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别为角A,B,C的对边,已知
.
m
=(cos
C
2
,sin
C
2
)
.
n
=(cos
C
2
,-sin
C
2
)
,且
m
n
=
1
2

(1)求角C;
(2)若a+b=
11
2
,△ABC的面积S=
3
3
2
,求边c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,A,B,C为三个内角,若cotA•cotB>1,则△ABC是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)函数的图象是由y=sinx的图象经过如下三步变换得到的:
①将y=sinx的图象整体向左平移
π
6
个单位;
②将①中的图象的纵坐标不变,横坐标缩短为原来的
1
2

③将②中的图象的横坐标不变,纵坐标伸长为原来的2倍.
(1)求f(x)的周期和对称轴;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,且f(C)=2,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

同步练习册答案