精英家教网 > 高中数学 > 题目详情
14、在各项均为正数的等比数列{an}中,已知a1=1,a2+a3=6,则数列{an}的通项公式为
an=2n-1
分析:先设等比数列的公比为q;根据a1=1,a2+a3=6求出公比即可求出数列{an}的通项公式.(注意题中的限制条件“各项均为正数')
解答:解:设等比数列的公比为q.
则由a1=1,a2+a3=6,得:a1(q+q2)=6?q2+q-6=0
解得q=2或q=-3.
又因为数列各项均为正数
∴q=2.
∴an=a1•qn-1=2n-1
故答案为:an=2n-1
点评:本题考查等比数列的基本量之间的关系,若已知等比数列的两项,则等比数列的所有量都可以求出,只要简单数字运算时不出错,问题可解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在各项均为正数的等比数列{an}中,若a1
1
2
a3,2a2
成等差数列,则
a9
a8
=(  )
A、3-2
2
B、3+2
2
C、1-
2
D、1+
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在各项均为正数的等比数列{bn}中,若b7•b8=3,则log3b1+log3b2+…+log3b14等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在各项均为正数的等比数列|an|中,若a2=2,则a1+2a3的最小值是
4
2
4
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在各项均为正数的等比数列{an}中,若log2a2+log2a8=1,则a3•a7=
 

查看答案和解析>>

同步练习册答案