精英家教网 > 高中数学 > 题目详情

【题目】已知向量,若函数的最小正周期为,且在上单调递减.

(1)的解析式;

(2)若关于的方程有实数解,求的取值范围.

【答案】(1) (2)

【解析】

(1)利用两角和与差的三角函数化简函数的解析式,求出函数的周期,得到ω,然后求解函数的解析式.

(2)化简方程为:2a(sin2x+cos2x)2﹣2(sin2x﹣cos2x)﹣3a+3=0,令,原方程化为2a(2﹣t2)﹣2t﹣3a+3=0,整理2at2+2t﹣a﹣3=0,等价于2at2+2t﹣a﹣3=0在[﹣1,1]有解.

(1)=,由

,此时上单调递增,不符合题意

此时上单调递减,符合题意

所以

(2)方程即方程

,设

方程等价于在有解

,若不符合题意

时,有解:

方程在有一解,

方程在在有二解,

综上所述:的范围

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:

单价x(元)

8

8.2

8.4

8.6

8.8

9

销量y(件)

90

84

83

80

75

68

(1)求回归直线方程=bx+a;(其中);

(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=

(Ⅰ)求函数f(x)的定义域;

(Ⅱ)判定f(x)的奇偶性并证明;

(Ⅲ)用函数单调性定义证明:f(x)在(1,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】佳木斯一中从高二年级甲、乙两个班中各选出7名学生参加2017年全国高中数学联赛(黑龙江初赛),他们取得的成绩(满分140分)的茎叶图如图所示,其中甲班学生成绩的中位数是81,乙班学生成绩的平均数是86,若正实数满足 成等差数列且 成等比数列,则的最小值为( )

A. B. 2 C. D. 8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学早上8点开始上课,若学生小典与小方均在之间到校,且两人在该时间段的任何时刻到校都是等可能的,则小典比小方至少早5分钟到校的概率为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在高为2的梯形中, ,过分别作 ,垂足分别为。已知,将梯形沿同侧折起,得空间几何体,如图2。

(1)若,证明:

(2)若,证明:

(3)在(1),(2)的条件下,求三棱锥的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 处有极值.

(Ⅰ)求a的值;

(Ⅱ)求f(x)在上的最大值和最小值;

(Ⅲ)在下面的坐标系中作出上的图象,若方程 上有2个不同的实数解,结合图象求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+(y-1)2=5,直线l:mx-y+1-m=0,且直线l与圆C交于A、B两点.

(1)若|AB|=,求直线l的倾斜角;

(2)若点P(1,1)满足2,求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:

赔付金额()

0

1 000

2 000

3 000

4 000

车辆数()

500

130

100

150

120

(1)若每辆车的投保金额均为2800,估计赔付金额大于投保金额的概率.

(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.

查看答案和解析>>

同步练习册答案