精英家教网 > 高中数学 > 题目详情

【题目】国内某知名大学有男生14000人,女生10000人,该校体育学院想了解本校学生的运动状况,根据性别采取分层抽样的方法从全校学生中抽取120人,统计他们平均每天运动的时间,如下表:(平均每天运动的时间单位:小时,该校学生平均每天运动的时间范围是).

男生平均每天运动时间分布情况:

女生平均每天运动时间分布情况:

(1)请根据样本估算该校男生平均每天运动的时间(结果精确到0.1);

(2)若规定平均每天运动的时间不少于2小时的学生为“运动达人”,低于2小时的学生为“非运动达人”.

①请根据样本估算该校“运动达人”的数量;

②请根据上述表格中的统计数据填写下面列联表,并通过计算判断能否在犯错误的概率不超过0.05的前提下认为“是否为‘运动达人’与性别有关?”

参考公式:,其中.

参考数据:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

【答案】(1)1.5;(2)①4000;②在犯错误的概率不超过0.05的前提下不能认为“是否为‘运动达人’与性别有关”.

【解析】试题分析:(1)由分层抽样计算得男生抽人,女生抽人,故,由此求得男生平均运动事件为小时;(2)计算,故在犯错误的概率不超过的前提下不能认为是否为运动达人与性别有关”.

试题解析:

1)由分层抽样得:男生抽取的人数为人,女生抽取人数为人,

则该校男生平均每天运动时间为:

故该校男生平均每天运动的时间约为1.5小时;

2样本中运动达人所占比例是,故估计该校运动达人人;

由表可知:

的观测值

故在犯错误的概率不超过0.05的前提下不能认为是否为运动达人与性别有关

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某学校为了分析在一次数学竞赛中甲、乙两个班的数学成绩,分别从甲、乙两个班中随机抽取了10个学生的成绩,成绩的茎叶图如下:

)根据茎叶图,计算甲班被抽取学生成绩的平均值及方差

)若规定成绩不低于90分的等级为优秀,现从甲、乙两个班级所抽取成绩等级为优秀的学生中,随机抽取2人,求这两个人恰好都来自甲班的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=|x﹣a|+|2x﹣a|,a<0. (Ⅰ)求函数f(x)的最小值;
(Ⅱ)若不等式f(x)< 的解集非空,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: + =1(a>b>0),离心率e= ,已知点P(0, )到椭圆C的右焦点F的距离是 .设经过点P且斜率存在的直线与椭圆C相交于A、B两点,线段AB的中垂线与x轴相交于一点Q. (Ⅰ)求椭圆C的标准方程;
(Ⅱ)求点Q的横坐标x0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,等差数列满足

1)分别求数列的通项公式;

2)若对任意的,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题pf(x)=-x2+2ax+1-ax∈[0,1]时的最大值不超过2,命题q:正数xy满足x+2y=8,且 恒成立. 若p∨(q)为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数上是增函数,则的取值范围是(  )

A. B. C. D.

【答案】C

【解析】

若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,则x2﹣ax+3a>0且f(2)0,根据二次函数的单调性,我们可得到关于a的不等式,解不等式即可得到a的取值范围.

若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,

则当x∈[2,+∞)时,

x2﹣ax+3a>0且函数f(x)=x2﹣ax+3a为增函数

,f(2)=4+a>0

解得﹣4<a≤4

故选:C.

【点睛】

本题考查的知识点是复合函数的单调性,二次函数的性质,对数函数的单调区间,其中根据复合函数的单调性,构造关于a的不等式,是解答本题的关键.

型】单选题
束】
10

【题目】圆锥的高和底面半径之比,且圆锥的体积,则圆锥的表面积为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合M={(x,y)|y=f(x)},若对于任意实数对(x1 , y1)∈M,存在(x2 , y2)∈M,使x1x2+y1y2=0成立,则称集合M具有∟性,给出下列四个集合: ①M={(x,y)|y=x3﹣2x2+3}; ②M={(x,y)|y=log2(2﹣x)};
③M={(x,y)|y=2﹣2x}; ④M={(x,y)|y=1﹣sinx};
其中具有∟性的集合的个数是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知矩形ABCD与直角梯形ABEF,∠DAF=∠FAB=90°,点G为DF的中点,AF=EF= ,P在线段CD上运动.
(1)证明:BF∥平面GAC;
(2)当P运动到CD的中点位置时,PG与PB长度之和最小,求二面角P﹣CE﹣B的余弦值.

查看答案和解析>>

同步练习册答案