精英家教网 > 高中数学 > 题目详情
4.函数y=$\frac{{x}^{2}-x+6}{{x}^{2}-2x-3}$的值域是(-∞,$-\frac{1}{4}-\frac{\sqrt{6}}{2}$]∪[$-\frac{1}{4}+\frac{\sqrt{6}}{2},+∞$).

分析 把原函数解析式变形,化为关于x的方程,讨论二次项系数后利用判别式法求函数的值域.

解答 解:由y=$\frac{{x}^{2}-x+6}{{x}^{2}-2x-3}$,得(y-1)x2-(2y-1)x-(3y+6)=0.
当y=1时,x=-9;
当y≠1,由△=(2y-1)2+4(y-1)(3y+6)=16y2+8y-23≥0,
解得:$y≤-\frac{1}{4}-\frac{\sqrt{6}}{2}$或$y≥-\frac{1}{4}+\frac{\sqrt{6}}{2}$且y≠1.
∴函数y=$\frac{{x}^{2}-x+6}{{x}^{2}-2x-3}$的值域是(-∞,$-\frac{1}{4}-\frac{\sqrt{6}}{2}$]∪[$-\frac{1}{4}+\frac{\sqrt{6}}{2},+∞$).
故答案为:(-∞,$-\frac{1}{4}-\frac{\sqrt{6}}{2}$]∪[$-\frac{1}{4}+\frac{\sqrt{6}}{2},+∞$).

点评 本题考查函数的值域及其求法,训练了判别式法求函数的值域,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.如图,在矩形ABCD中,点E是BC边上中点,点F在边CD上.
(1)若点F是CD上靠近C的三等分点,设$\overrightarrow{EF}$=λ$\overrightarrow{AB}$+$μ\overrightarrow{AD}$,求λ+μ的值.
(2)若AB=$\sqrt{3}$,BC=2,当$\overrightarrow{AE}$•$\overrightarrow{BF}$=1时,求DF的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.关于直线1和平面α,β,有如下三个命题:
①若直线l与平面α内的任意一条直线都没有公共点,则1∥α;
②若平面α内的任意一条直线与平面β都没有公共点,则α∥β;
③若直线1与平面α内的任意一条直线都垂直,则l⊥α.
在上述三个命题中,正确命题的个数为(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(α>b>0)的长半轴长为2,离心率为$\frac{\sqrt{3}}{2}$.
(I)求椭圆C的方程;
(2)直线y=kx+2与椭圆C交于A,B两个不同点,点E(1,0)在以AB为直径的圆的外部,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1(-1,0)、F2(1,0),过F1作与x轴不重合的直线l交椭圆于A、B两点,若△ABF1为正三角形,求椭圆的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数g(x)=3x+a•3-x,x∈R.

(1)若f(x)是R上的偶函数,求a的值;
(2)若a=0,在给定的坐标系中画出函数g(x)=$\left\{\begin{array}{l}{f(x)+1(x<0)}\\{-x+2(x≥0)}\end{array}\right.$的图象(不列表)并指出方程g(x)-m=0有两解时m的取值范围;
(3)若a<0,判断函数f(x)在定义域内的单调性,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.复数z=log3(x2-3x-3)+ilog2(x-3),当x为何实数时:
(1)z∈R?
(2)z为虚数?
(3)z表示的点在复平面的第一象限?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知A(3,-5),B(1,-7),则线段AB的中点的坐标是(2,-6).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知在递增等差数列{an}中,a3=1,a4是a3和a7的等比中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{an}的前n项和为Sn,求该数列的前10项的和S10的值.

查看答案和解析>>

同步练习册答案