【题目】在平面直角坐标系xOy中,曲线C的参数为(α为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为;
(1)写出曲线C的普通方程和直线l的参数方程;
(2)设点P(m,0),若直线l与曲线C相交于A,B两点,且|PA||PB|=1,求实数m的值.
【答案】(1)(x﹣1)2+y2=1,,(t为参数);(2)或1.
【解析】
(1)利用消参即可求得曲线的普通方程;再将直线的极坐标方程化为直角方程,再写出其参数方程即可;
(2)联立直线的参数方程和曲线的普通方程,根据直线参方中参数的几何意义即可求得.
(1)∵曲线C的参数为(α为参数),
∴曲线C的普通方程为(x﹣1)2+y2=1,
∵直线l的极坐标方程为,
∴直线l的直角坐标方程为xy﹣m=0,
∴直线l的参数方程为,(t为参数).
(2)把,(t为参数)代入(x﹣1)2+y2=1,
得0,
由0,
解得﹣1<m<3,
∴t1t2=m2﹣2m,
∵|PA||PB|=1=|t1t2|,
∴m=1或m=1,
∵﹣1<m<3,
∴实数m的值为或1.
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,左、右焦点分别是,椭圆上短轴的一个端点与两个焦点构成的三角形的面积为;
(1)求椭圆的方程;
(2)过作垂直于轴的直线交椭圆于两点(点在第二象限),是椭圆上位于直线两侧的动点,若,求证:直线的斜率为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=cos(),把函数f(x)的图象向左平移个单位得函数g(x)的图象,则下面结论正确的是( )
A.函数g(x)是偶函数
B.函数g(x)的最小正周期是4π
C.函数g(x)在区间[π,3π]上是增区数
D.函数g(x)的图象关于直线x=π对称
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A.命题p:,则¬p:x∈R,x2+x+1<0
B.在△ABC中,“A<B”是“sinA<sinB”的既不充分也不必要条件
C.若命题p∧q为假命题,则p,q都是假命题
D.命题“若x2﹣3x+2=0,则x=1”的逆否命题为“x≠1,则x2﹣3x+2≠0”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若椭圆:上有一动点,到椭圆的两焦点,的距离之和等于,到直线的最大距离为.
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点的直线与椭圆交于不同两点、,(为坐标原点)且,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在(-∞,0)∪(0,+∞)上的偶函数,当x>0时,f(x)=lnx-ax,若函数在定义域上有且仅有4个零点,则实数a的取值范围是( )
A.(e,+∞)B.(0,)
C.(1,)D.(-∞,)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com