【题目】已知数列满足,,.
(1)若.
①求数列的通项公式;
②证明:对, .
(2)若,且对,有,证明:.
科目:高中数学 来源: 题型:
【题目】棋盘上标有第、、、、站,棋子开始位于第站,棋手抛掷均匀硬币走跳棋游戏,若掷出正面,棋子向前跳出一站;若掷出反面,棋子向前跳出两站,直到调到第站或第站时,游戏结束.设棋子位于第站的概率为.
(1)当游戏开始时,若抛掷均匀硬币次后,求棋手所走步数之和的分布列与数学期望;
(2)证明:;
(3)求、的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校为了了解该校高三年级学生寒假在家自主学习的情况,随机对该校300名高三学生寒假的每天学习时间(单位:h)进行统计,按照,,,,的分组作出频率分布直方图如图所示.
(Ⅰ)根据频率分布直方图计算该校高三年级学生的平均每天学习时间(同一组中的数据用该组区间中点值代表);
(Ⅱ)该校规定学习时间超过4h为合格,否则不合格.已知这300名学生中男生有140人,其中合格的有70人,请补全下表,根据表中数据,能否有99.9%的把握认为该校高三年级学生的性别与学习时长合格有关?
男生 | 女生 | 总计 | |
不合格 | |||
合格 | 70 | ||
总计 | 140 | 160 | 300 |
参考公式:,其中.
参考附表:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给定个不同的数、、、、,它的某一个排列的前项和为,该排列中满足的的最大值为.记这个不同数的所有排列对应的之和为.
(1)若,求;
(2)若,.
①证明:对任意的排列,都不存在使得;
②求(用表示).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年全国数学奥赛试行改革:在高二一年中举行5次全区竞赛,学生如果其中2次成绩达全区前20名即可进入省队培训,不用参加其余的竞赛,而每个学生最多也只能参加5次竞赛.规定:若前4次竞赛成绩都没有达全区前20名,则第5次不能参加竞赛.假设某学生每次成绩达全区前20名的概率都是,每次竞赛成绩达全区前20名与否互相独立.
(1)求该学生进入省队的概率.
(2)如果该学生进入省队或参加完5次竞赛就结束,记该学生参加竞赛的次数为,求的分布列及的数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的内接等边三角形的面积为(其中为坐标原点).
(1)试求抛物线的方程;
(2)已知点两点在抛物线上,是以点为直角顶点的直角三角形.
①求证:直线恒过定点;
②过点作直线的垂线交于点,试求点的轨迹方程,并说明其轨迹是何种曲线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下图统计了截止到2019年年底中国电动汽车充电桩细分产品占比及保有量情况,关于这5次统计,下列说法正确的是( )
A.私人类电动汽车充电桩保有量增长率最高的年份是2018年
B.公共类电动汽车充电桩保有量的中位数是25.7万台
C.公共类电动汽车充电桩保有量的平均数为23.12万台
D.从2017年开始,我国私人类电动汽车充电桩占比均超过50%
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com