精英家教网 > 高中数学 > 题目详情

【题目】已知函数为偶函数,且函数图像的两相邻对称轴间的距离为.

1)求的值.

2)将函数的图像向右平移个单位,再将得到的图像上每个点的横坐标伸长到原来的倍,纵坐标不变,得到函数的图像,求的单调递减区间.

【答案】12

【解析】

1)将将函数变形为,利用是偶函数,则有求得,利用函数图像的两相邻对称轴间的距离为,求得 ,进而确定函数,再求.

2)根据图象变换,函数的图像向右平移个单位,得到,再将得到的图像上每个点的横坐标伸长到原来的倍,纵坐标不变,得到,再求单调区间.

1

因为是偶函数

所以

又因为

又因为函数图像的两相邻对称轴间的距离为.

所以

所以

所以

2)函数的图像向右平移个单位,得到

再将得到的图像上每个点的横坐标伸长到原来的倍,纵坐标不变,

得到

解得

所以的单调递减区间是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左,右焦点分别为 ,离心率为 是椭圆上的动点,当时, 的面积为.

(1)求椭圆的标准方程;

(2)若过点的直线交椭圆 两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是正方体的平面展开图,在这个正方体中;

1BMED平行;(2CNBE是异面直线;(3CNBM所成角为60°;(4CNAF垂直. 以上四个命题中,正确命题的序号是( )

A.(1)(2)(3)B.(2)(4)C.(3)(4)D.(3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(ωx+θ),其中ω>0,θ∈(0,),=0,(x1≠x2),|x2-x1min,f(x)=f(-x),将函数f(x)的图象向左平移个单位长度得到函数g(x)的图象,则函数g(x)的单调递减区间是

A. [kπ-,kπ+](k∈Z) B. [kπ,kπ+](k∈Z)

C. [kπ+,kπ+](k∈Z) D. [kπ+,kπ+](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一片森林原面积为,计划从某年开始,每年砍伐一些树林,且每年砍伐面积与上一年剩余面积的百分比相等.并计划砍伐到原面积的一半时,所用时间是10.为保护生态环境,森林面积至少要保留原面积的.已知到今年为止,森林剩余面积为原面积的.

1)求每年砍伐面积与上一年剩余面积的百分比;

2)到今年为止,该森林已砍伐了多少年?

3)为保护生态环境,今后最多还能砍伐多少年?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆恒过点,且与直线 相切.

(1)求动圆圆心的轨迹的方程;

(2)探究在曲线上,是否存在异于原点的两点 ,当时,直线恒过定点?若存在,求出该定点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)若直角三角形两直角边长之和为12,求其周长的最小值;

(2)若三角形有一个内角为,周长为定值,求面积的最大值;

(3)为了研究边长满足的三角形其面积是否存在最大值,现有解法如下:(其中, 三角形面积的海伦公式),

,则

但是,其中等号成立的条件是,于是矛盾,

所以,此三角形的面积不存在最大值.

以上解答是否正确?若不正确,请你给出正确的答案.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面平面,,分别为线段的中点,点是线段的中点.求证:

1平面

2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数,如果满足;对任意,存在常数,都有成立,则称上的有界函数,其中称为函数的上界.已知函数.

)当时,求函数上的值域,并判断函数上是否为有界函数,请说明理由;

)若上的有界函数,且的上界为3,求实数的取值范围;

)若,求函数上的上界的取值范围.

查看答案和解析>>

同步练习册答案