精英家教网 > 高中数学 > 题目详情
6.设α、β为互不重合的平面,m、n为互不重合的直线,下列四个命题中所有正确命题的序号是①④.
①若m⊥α,n?α,则m⊥n;
②若m?α,n?α,m∥β,n∥β,则α∥β.
③若m∥α,n∥α,则m∥n.
④若α⊥β,α∩β=m,n?α,n⊥m,则n⊥β.

分析 根据有关定理中的诸多条件,对每一个命题进行逐一进行是否符合定理条件去判定,不正确的只需取出反例即可.

解答 解:①若m⊥α,n?α,利用线面垂直的性质,可得m⊥n,正确;
②若m?α,n?α,m∥β,n∥β,则α∥β;两条相交直线才行,不正确.
③m∥α,n∥α,则m与n可能平行、相交、异面,不正确.
④若α⊥β,α∩β=m,n?α,n⊥m,则由面面垂直的性质定理我们易得到n⊥β,正确.
故答案为:①④.

点评 本题考查的知识点是平面与平面垂直的判定,直线与平面平行的判定,直线与平面垂直的判定,熟练掌握这些定理及定义,熟练掌握空间线面关系的几何特征是解答此类问题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知z=$\frac{{{(\sqrt{3}+i)}^{2}(4+3i)}^{3}}{{(\sqrt{2}+i)}^{2}}$,求|z|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=Asin(ωx+φ)(A>0,ω>0)为偶函数的充要条件是(  )
A.φ=$\frac{π}{2}$+2kπ(k∈Z)B.φ=$\frac{π}{2}$+kπ(k∈Z)C.$\frac{φ}{ω}$=$\frac{π}{2}$+2kπ(k∈Z)D.$\frac{φ}{ω}$=$\frac{π}{2}$+kπ(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设数列{an}满足:an≠0,a1=1,a2=2,an-1(an+1-an)=a2n,n≥2.
(1)设bn=$\frac{{a}_{n+1}}{{a}_{n}}$,求证:{bn}为等差数列;
(2)设cn=$\frac{n}{{a}_{n+1}}$,且{cn}的前n项和为Sn,证明:Sn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.椭圆C经过(1,1)与($\frac{\sqrt{6}}{2}$,$\frac{\sqrt{3}}{2}$)两点,求椭圆C的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知一个圆锥的母线长为L.
(1)若L=5,底面半径为4,求圆锥的全面积;
(2)若L为定值,求当圆锥的体积最大时,圆锥的高为多少?(用L表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=|x2-1|+x2+ax,(a<-1,x>-1).
(1)求函数f(x)的最小值;
(2)若函数f(x)有两个零点x1,x2,试判断f(x1x2)与a+1的大小关系,并证明;
(3)己知实数m,n(-1<m<n≤1),对任意t0∈(m,n),总存在两个不同的t1,t2∈(1,+∞)使得f(t0)-2=f(t1)=f(t2),求证:n-m≤$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1的离心率e=3,直线y=x+2与双曲线交于A,B两点,若OA⊥OB,求双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x+2,}&{x≤0}\\{-{x}^{2},}&{x>0}\end{array}\right.$,若f(f(a))=2,则a=(  )
A.-$\sqrt{2}$B.$\sqrt{2}$C.1D.-1

查看答案和解析>>

同步练习册答案