精英家教网 > 高中数学 > 题目详情
求关于x的不等式的解集:ax2-(a+1)x+1<0(a≠0,a为参数)
(1)当a=3时,求不等式的解集             
(2)讨论求不等式的解集.
分析:(1)按照一元二次不等式求解步骤求解即可,利用的是数形结合的思想.
(2)(ax-1)(x-1)=0两根为x1=
1
a
,x2=1;以两根大小,兼顾a的正负,进行分类讨论求解.
解答:解:(1)当a=3时,原不等式为3x2-4x+1<0,即(3x-1)(x-1)<0,
方程(3x-1)(x-1)=0两根为x1=
1
3
,x2=1;
不等式的解集 为{x|
1
3
<x<1
}
(2)ax2-(a+1)x+1<0,即为(ax-1)(x-1)<0,方程(ax-1)(x-1)=0两根为x1=
1
a
,x2=1;
当a<0时,x1<x2,此时不等式解集为{x|x<
1
a
,或x>1};
当0<a<1时,x1>x2,此时不等式解集为{x|1<x<
1
a
};
当a=1时,x1=x2,此时不等式解集为∅;
当a>1时,x1<x2,此时不等式解集为{x|
1
a
<x<1};
点评:此题考查了一元二次不等式的解法,考查了分类讨论的数学思想,数形结合的思想,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知关于x的不等式|ax-1|+|ax-a|≥1(a>0).
(1)当a=1时,求此不等式的解集;
(2)若此不等式的解集为R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知关于x的不等式|ax-2|+|ax-a|≥2(a>0).
(1)当a=1时,求此不等式的解集;
(2)若此不等式的解集为R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

求关于x的不等式的解集

查看答案和解析>>

科目:高中数学 来源:《1.2.2 绝对值不等式的解法》2013年同步练习(解析版) 题型:解答题

选修4-5:不等式选讲
已知关于x的不等式|ax-1|+|ax-a|≥1(a>0).
(1)当a=1时,求此不等式的解集;
(2)若此不等式的解集为R,求实数a的取值范围.

查看答案和解析>>

同步练习册答案