精英家教网 > 高中数学 > 题目详情

【题目】设函数,其中.

(Ⅰ)当时,讨论函数的单调性;

(Ⅱ)若函数仅在处有极值,求的取值范围;

(Ⅲ)若对于任意的,不等式上恒成立,求的取值范围.

【答案】(1) 内是增函数,在 内是减函数.

(2) .

(3) .

【解析】(I)时,直接求导,利用导数大(小)于零,求其单调递增(减)区间即可.

(2)由题意知,显然不是方程的根为使仅在处有极值,必须成立,即有,到此问题基本得以解决.

(3) 由条件,可知,从而恒成立.这样根据可确定其单调增区间为,减区间为.然后通过比较f(-1)f(1)求出最大值,根据最大值小于或等于1[-1,1]上恒成立.来建立ba的不等式,确定出b的范围.

时,

,解得

变化时, 的变化情况如下表:



0




2




0


0


0




极小值


极大值


极小值


所以内是增函数,在内是减函数.

)解: ,显然不是方程的根.

为使仅在处有极值,必须成立,即有

解此不等式,得.这时, 是唯一极值.

因此满足条件的的取值范围是

)由条件,可知,从而恒成立.

时, ;当时,

因此函数上的最大值是两者中的较大者.

为使对任意的,不等式上恒成立,当且仅当

,在上恒成立.

所以,因此满足条件的的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,且曲线处有相同的切线.

(Ⅰ)求实数的值;

(Ⅱ)求证:上恒成立;

(Ⅲ)当时,求方程在区间内实根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为

(Ⅰ)求的解析式;

(Ⅱ)当,求的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数的对称轴方程;

2)将函数的图象上各点的纵坐标保持不变,横坐标伸长为原来的2倍,然后再向左平移个单位,得到函数的图象.若 分别是三个内角 的对边, ,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥SABCD的底面为正方形,SD⊥底面ABCD,则下列结论中,错误的是(   )

A.ACSB

B.BC∥平面SAD

C.SASC与平面SBD所成的角相等

D.异面直线ABSC所成的角和异面直线CDSA所成的角相等

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为实常数,函数.

(1)讨论函数的单调性;

(2)若函数有两个不同的零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,网络电商已经悄然进入了广大市民的日常生活,并慢慢改变了人们的消费方式为了更好地服务民众,某电商在其官方APP中设置了用户评价反馈系统,以了解用户对商品状况和优惠活动的评价现从评价系统中随机抽出200条较为详细的评价信息进行统计,商品状况和优惠活动评价的2×2列联表如下:

对优惠活动好评

对优惠活动不满意

合计

对商品状况好评

100

20

120

对商品状况不满意

50

30

80

合计

150

50

200

I)能否在犯错误的概率不超过0.001的前提下认为优惠活动好评与商品状况好评之间有关系?

(Ⅱ)为了回馈用户,公司通过APP向用户随机派送每张面额为0元,1元,2元的三种优惠券用户每次使用APP购物后,都可获得一张优惠券,且购物一次获得1元优惠券,2元优惠券的概率分别是,各次获取优惠券的结果相互独立若某用户一天使用了APP购物两次,记该用户当天获得的优惠券面额之和为X,求随机变量X的分布列和数学期望.

参考数据

PK2k

0.150

0.100

0.050

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式:K2,其中na+b+c+d

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公园欲将一块空地规划成如图所示的区域,其中在边长为20米的正方形内种植经红色郁金香,在正方形的剩余部分(即四个直角三角形内)种植黄色郁金香.现要在以为边长的矩形内种植绿色草坪,要求绿色草坪的面积等于黄色郁金香的面积.设米.

1)求之间的函数关系式;

2)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合,对于的一个子集,若存在不大于的正整数,使得对中的任意一对元素,都有,则称具有性质.

1)当时,试判断集合是否具有性质?并说明理由;

2)当时,若集合具有性质.

①那么集合是否一定具有性质?并说明理由;

②求集合中元素个数的最大值.

查看答案和解析>>

同步练习册答案