【题目】设函数,其中.
(Ⅰ)当时,讨论函数的单调性;
(Ⅱ)若函数仅在处有极值,求的取值范围;
(Ⅲ)若对于任意的,不等式在上恒成立,求的取值范围.
【答案】(1) 在, 内是增函数,在, 内是减函数.
(2) .
(3) .
【解析】(I)当时,直接求导,利用导数大(小)于零,求其单调递增(减)区间即可.
(2)由题意知,显然不是方程的根为使仅在处有极值,必须成立,即有,到此问题基本得以解决.
(3) 由条件,可知,从而恒成立.这样根据可确定其单调增区间为,减区间为.然后通过比较f(-1)和f(1)求出最大值,根据最大值小于或等于1在[-1,1]上恒成立.来建立b与a的不等式,确定出b的范围.
(Ⅰ).
当时, .
令,解得, , .
当变化时, , 的变化情况如下表:
0 | 2 | ||||||
- | 0 | + | 0 | - | 0 | + | |
↘ | 极小值 | ↗ | 极大值 | ↘ | 极小值 | ↗ |
所以在, 内是增函数,在, 内是减函数.
(Ⅱ)解: ,显然不是方程的根.
为使仅在处有极值,必须成立,即有.
解此不等式,得.这时, 是唯一极值.
因此满足条件的的取值范围是.
(Ⅲ)由条件,可知,从而恒成立.
当时, ;当时, .
因此函数在上的最大值是与两者中的较大者.
为使对任意的,不等式在上恒成立,当且仅当,
即,在上恒成立.
所以,因此满足条件的的取值范围是.
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)求函数的对称轴方程;
(2)将函数的图象上各点的纵坐标保持不变,横坐标伸长为原来的2倍,然后再向左平移个单位,得到函数的图象.若, , 分别是△三个内角, , 的对边, , ,且,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥S﹣ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中,错误的是( )
A.AC⊥SB
B.BC∥平面SAD
C.SA和SC与平面SBD所成的角相等
D.异面直线AB与SC所成的角和异面直线CD与SA所成的角相等
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,网络电商已经悄然进入了广大市民的日常生活,并慢慢改变了人们的消费方式为了更好地服务民众,某电商在其官方APP中设置了用户评价反馈系统,以了解用户对商品状况和优惠活动的评价现从评价系统中随机抽出200条较为详细的评价信息进行统计,商品状况和优惠活动评价的2×2列联表如下:
对优惠活动好评 | 对优惠活动不满意 | 合计 | |
对商品状况好评 | 100 | 20 | 120 |
对商品状况不满意 | 50 | 30 | 80 |
合计 | 150 | 50 | 200 |
(I)能否在犯错误的概率不超过0.001的前提下认为优惠活动好评与商品状况好评之间有关系?
(Ⅱ)为了回馈用户,公司通过APP向用户随机派送每张面额为0元,1元,2元的三种优惠券用户每次使用APP购物后,都可获得一张优惠券,且购物一次获得1元优惠券,2元优惠券的概率分别是,,各次获取优惠券的结果相互独立若某用户一天使用了APP购物两次,记该用户当天获得的优惠券面额之和为X,求随机变量X的分布列和数学期望.
参考数据
P(K2≥k) | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:K2,其中n=a+b+c+d
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公园欲将一块空地规划成如图所示的区域,其中在边长为20米的正方形内种植经红色郁金香,在正方形的剩余部分(即四个直角三角形内)种植黄色郁金香.现要在以为边长的矩形内种植绿色草坪,要求绿色草坪的面积等于黄色郁金香的面积.设,米.
(1)求与之间的函数关系式;
(2)求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合,对于的一个子集,若存在不大于的正整数,使得对中的任意一对元素、,都有,则称具有性质.
(1)当时,试判断集合和是否具有性质?并说明理由;
(2)当时,若集合具有性质.
①那么集合是否一定具有性质?并说明理由;
②求集合中元素个数的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com